Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Appl Environ Microbiol ; 66(11): 4742-50, 2000 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-11055918

RESUMO

The enzymatic transformation of 2,4,6-trinitrotoluene (TNT) by purified XenB, an NADPH-dependent flavoprotein oxidoreductase from Pseudomonas fluorescens I-C, was evaluated by using natural abundance and [U-(14)C]TNT preparations. XenB catalyzed the reduction of TNT either by hydride addition to the aromatic ring or by nitro group reduction, with the accumulation of various tautomers of the protonated dihydride-Meisenheimer complex of TNT, 2-hydroxylamino-4,6-dinitrotoluene, and 4-hydroxylamino-2, 6-dinitrotoluene. Subsequent reactions of these metabolites were nonenzymatic and resulted in predominant formation of at least three dimers with an anionic m/z of 376 as determined by negative-mode electrospray ionization mass spectrometry and the release of approximately 0.5 mol of nitrite per mol of TNT consumed. The extents of the initial enzymatic reactions were similar in the presence and in the absence of O(2), but the dimerization reaction and the release of nitrite were favored under aerobic conditions or under anaerobic conditions in the presence of NADP(+). Reactions of chemically and enzymatically synthesized and high-pressure liquid chromatography-purified TNT metabolites showed that both a hydroxylamino-dinitrotoluene isomer and a tautomer of the protonated dihydride-Meisenheimer complex of TNT were required precursors for the dimerization and nitrite release reactions. The m/z 376 dimers also reacted with either dansyl chloride or N-1-naphthylethylenediamine HCl, providing evidence for an aryl amine functional group. In combination, the experimental results are consistent with assigning the chemical structures of the m/z 376 species to various isomers of amino-dimethyl-tetranitrobiphenyl. A mechanism for the formation of these proposed TNT metabolites is presented, and the potential enzymatic and environmental significance of their formation is discussed.


Assuntos
Proteínas de Bactérias , Flavoproteínas/metabolismo , Oxirredutases/metabolismo , Pseudomonas fluorescens/enzimologia , Trinitrotolueno/metabolismo , Anaerobiose/fisiologia , Cromatografia/métodos , Flavoproteínas/isolamento & purificação , Nitritos/química , Nitritos/metabolismo , Nitrocompostos/química , Nitrocompostos/metabolismo , Oxirredutases/isolamento & purificação , Espectrometria de Massas por Ionização por Electrospray/métodos , Trinitrotolueno/química
2.
Biotechnol Bioeng ; 59(4): 520-3, 1998 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-10099367

RESUMO

We attempted to expand the range of chlorinated solvents degraded by Xanthobacter autotrophicus GJ10 to include trichloroethylene by the rational modification of the enzyme haloalkane dehalogenase. The amino acids Phe164, Asp170, Phe172 and Trp175 were individually replaced with alanine by site-directed mutagenesis. All substitutions produced enzymes with lower than wild type activity with 1,2-dichloroethane. The Phe164Ala and Asp170Ala mutants were 3 and 2 times more active than was the wild type enzyme in dechlorinating 1,6-dichlorohexane. The Asp170Ala mutant resembled the wild type enzyme in its relative activity against longer chain substrates. No mutant was active with trichloroethylene.


Assuntos
Hidrolases/metabolismo , Alanina/metabolismo , Ácido Aspártico/metabolismo , Proteínas de Bactérias , Sítios de Ligação , Hidrolases/genética , Mutagênese Sítio-Dirigida , Fenilalanina/metabolismo
3.
J Bacteriol ; 179(22): 6912-20, 1997 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-9371434

RESUMO

Two species of Pseudomonas capable of utilizing nitroglycerin (NG) as a sole nitrogen source were isolated from NG-contaminated soil and identified as Pseudomonas putida II-B and P. fluorescens I-C. While 9 of 13 laboratory bacterial strains that presumably had no previous exposure to NG could degrade low concentrations of NG (0.44 mM), the natural isolates tolerated concentrations of NG that were toxic to the lab strains (1.76 mM and higher). Whole-cell studies revealed that the two natural isolates produced different mixtures of the isomers of dinitroglycerol (DNG) and mononitroglycerol (MNG). A monomeric, flavin mononucleotide-containing NG reductase was purified from each natural isolate. These enzymes catalyzed the NADPH-dependent denitration of NG, yielding nitrite. Apparent kinetic constants were determined for both reductases. The P. putida enzyme had a Km for NG of 52 +/- 4 microM, a Km for NADPH of 28 +/- 2 microM, and a Vmax of 124 +/- 6 microM x min(-1), while the P. fluorescens enzyme had a Km for NG of 110 +/- 10 microM, a Km for NADPH of 5 +/- 1 microM, and a Vmax of 110 +/- 11 microM x min(-1). Anaerobic titration experiments confirmed the stoichiometry of NADPH consumption, changes in flavin oxidation state, and multiple steps of nitrite removal from NG. The products formed during time-dependent denitration reactions were consistent with a single enzyme being responsible for the in vivo product distributions. Simulation of the product formation kinetics by numerical integration showed that the P. putida enzyme produced an approximately 2-fold molar excess of 1,2-DNG relative to 1,3-DNG. This result could be fortuitous or could possibly be consistent with a random removal of the first nitro group from either the terminal (C-1 and C-3) positions or middle (C-2) position. However, during the denitration of 1,2-DNG, a 1.3-fold selectivity for the C-1 nitro group was determined. Comparable simulations of the product distributions from the P. fluorescens enzyme showed that NG was denitrated with a 4.6-fold selectivity for the C-2 position. Furthermore, a 2.4-fold selectivity for removal of the nitro group from the C-2 position of 1,2-DNG was also determined. The MNG isomers were not effectively denitrated by either purified enzyme, which suggests a reason why NG could not be used as a sole carbon source by the isolated organisms.


Assuntos
Nitroglicerina/metabolismo , Oxirredutases/isolamento & purificação , Oxirredutases/metabolismo , Pseudomonas/enzimologia , Pseudomonas/metabolismo , Anaerobiose , Técnicas Bacteriológicas , Meios de Cultura/metabolismo , Flavoproteínas/isolamento & purificação , Flavoproteínas/metabolismo , Isomerismo , Cinética , NADP/metabolismo , Nitritos/metabolismo , Nitrogênio/metabolismo , Nitroglicerina/análogos & derivados , Oxirredução , Pseudomonas/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA