Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Chem Rev ; 123(1): 73-104, 2023 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-36260784

RESUMO

Elucidating the details of the formation, stability, interactions, and reactivity of biomolecular systems under extreme environmental conditions, including high salt concentrations in brines and high osmotic and high hydrostatic pressures, is of fundamental biological, astrobiological, and biotechnological importance. Bacteria and archaea are able to survive in the deep ocean or subsurface of Earth, where pressures of up to 1 kbar are reached. The deep subsurface of Mars may host high concentrations of ions in brines, such as perchlorates, but we know little about how these conditions and the resulting osmotic stress conditions would affect the habitability of such environments for cellular life. We discuss the combined effects of osmotic (salts, organic cosolvents) and hydrostatic pressures on the structure, stability, and reactivity of biomolecular systems, including membranes, proteins, and nucleic acids. To this end, a variety of biophysical techniques have been applied, including calorimetry, UV/vis, FTIR and fluorescence spectroscopy, and neutron and X-ray scattering, in conjunction with high pressure techniques. Knowledge of these effects is essential to our understanding of life exposed to such harsh conditions, and of the physical limits of life in general. Finally, we discuss strategies that not only help us understand the adaptive mechanisms of organisms that thrive in such harsh geological settings but could also have important ramifications in biotechnological and pharmaceutical applications.


Assuntos
Archaea , Sais , Sais/química , Bactérias , Ambientes Extremos
2.
Life (Basel) ; 12(5)2022 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-35629344

RESUMO

High pressure deep subsurface environments of Mars may harbor high concentrations of dissolved salts, such as perchlorates, yet we know little about how these salts influence the conditions for life, particularly in combination with high hydrostatic pressure. We investigated the effects of high magnesium perchlorate concentrations compared to sodium and magnesium chloride salts and high pressure on the conformational dynamics and stability of double-stranded B-DNA and, as a representative of a non-canonical DNA structure, a DNA-hairpin (HP), whose structure is known to be rather pressure-sensitive. To this end, fluorescence spectroscopies including single-molecule FRET methodology were applied. Our results show that the stability both of the B-DNA as well as the DNA-HP is largely preserved at high pressures and high salt concentrations, including the presence of chaotropic perchlorates. The perchlorate anion has a small destabilizing effect compared to chloride, however. These results show that high pressures at the kbar level and perchlorate anions can modify the stability of nucleic acids, but that they do not represent a barrier to the gross stability of such molecules in conditions associated with the deep subsurface of Mars.

3.
Chemistry ; 28(9): e202104182, 2022 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-34882862

RESUMO

Given the emergence of the severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2), which particularly threatens older people with comorbidities such as diabetes mellitus and dementia, understanding the relationship between Covid-19 and other diseases is an important factor for treatment. Possible targets for medical intervention include G-quadruplexes (G4Qs) and their protein interaction partners. We investigated the stability and conformational space of the RG-1 RNA-G-quadruplex of the SARS-CoV-2 N-gene in the presence of salts, cosolutes, crowders and intrinsically disordered peptides, focusing on α-Synuclein and the human islet amyloid polypeptide, which are involved in Parkinson's disease (PD) and type-II diabetes mellitus (T2DM), respectively. We found that the conformational dynamics of the RG-1 G4Q is strongly affected by the various solution conditions. Further, the amyloidogenic peptides were found to strongly modulate the conformational equilibrium of the RG-1. Considerable changes are observed with respect to their interaction with human telomeric G4Qs, which adopt different topologies. These results may therefore shed more light on the relationship between PD as well as T2DM and the SARS-CoV-2 disease and their molecular underpinnings. Since dysregulation of G4Q formation by rationally designed targeting compounds affects the control of cellular processes, this study should contribute to the development of specific ligands for intervention.


Assuntos
COVID-19 , SARS-CoV-2 , Idoso , Humanos , Polipeptídeo Amiloide das Ilhotas Pancreáticas/metabolismo , Peptídeos , RNA Viral , alfa-Sinucleína/química
4.
RSC Chem Biol ; 2(4): 1196-1200, 2021 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-34458831

RESUMO

The intrinsically disordered protein α-synuclein causes Parkinson's disease by forming toxic oligomeric aggregates inside neurons. Single-molecule FRET experiments revealed conformational changes of noncanonical DNA structures, such as i-motifs and hairpins, in the presence of α-synuclein. Volumetric analyses revealed differences in binding mode, which is also affected by cellular osmolytes.

5.
J Am Chem Soc ; 142(43): 18299-18303, 2020 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-33075229

RESUMO

Research on Parkinson's disease most often focuses on the ability of the protein α-synuclein (α-syn) to form oligomers and amyloid fibrils, and how such species promote brain death. However, there are indications that α-syn also plays a gene-regulatory role in the cell nucleus. Noncanonical tetrahelical nucleic acids, G-quadruplexes (G4Q), and i-motifs have been shown to play an important role in the control of genomic events. Using the conformation-sensitive single-molecule Förster resonance energy transfer technique we show that monomeric and oligomeric α-syn affect G4Qs and i-motifs in a different way and lead to remodeling of their conformational substates. Aggregated α-syn destabilizes the G4Q leading to unfolding. In contrast, both monomeric and aggregated α-syn enhance folding of the i-motif sequence of telomeric DNA. Importantly, macromolecular crowding is able to partially rescue G4Q from unfolding.


Assuntos
DNA/química , Agregados Proteicos , alfa-Sinucleína/química , Sequência de Bases , Transferência Ressonante de Energia de Fluorescência , Quadruplex G , Conformação de Ácido Nucleico
6.
Chemistry ; 26(48): 10987-10991, 2020 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-32453478

RESUMO

The effect of an amyloidogenic intrinsically disordered protein, α-synuclein, which is associated with Parkinson's disease (PD), on the conformational dynamics of a DNA hairpin (DNA-HP) was studied by employing the single-molecule Förster resonance energy transfer method. The open-to-closed conformational equilibrium of the DNA-HP is drastically affected by binding of monomeric α-synuclein to the loop region of the DNA-HP. Formation of a protein-bound intermediate conformation is fostered in the presence of an aqueous two-phase system mimicking intracellular liquid-liquid phase separation. Using pressure modulation, additional mechanistic information about the binding complex could be retrieved. Hence, in addition to toxic amyloid formation, α-synuclein may alter expression profiles of disease-modifying genes in PD. Furthermore, these findings might also have significant bearings on the understanding of the physiology of organisms thriving at high pressures in the deep sea.


Assuntos
DNA/química , Conformação Molecular , alfa-Sinucleína/química , Humanos , Proteínas Intrinsicamente Desordenadas/química , Doença de Parkinson
7.
Biophys Chem ; 251: 106190, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31146215

RESUMO

In this review we discuss results from temperature and pressure dependent single-molecule Förster resonance energy transfer (smFRET) studies on nucleic acids in the presence of macromolecular crowders and organic osmolytes. As representative examples, we have chosen fragments of both DNAs and RNAs, i.e., a synthetic DNA hairpin, a human telomeric G-quadruplex and the microROSE RNA hairpin. To mimic the effects of intracellular components, our studies include the macromolecular crowding agent Ficoll, a copolymer of sucrose and epichlorohydrin, and the organic osmolytes trimethylamine N-oxide, urea and glycine as well as natural occurring osmolyte mixtures from deep sea organisms. Furthermore, the impact of mutations in an RNA sequence on the conformational dynamics is examined. Different from proteins, the effects of the osmolytes and crowding agents seem to strongly dependent on the structure and chemical make-up of the nucleic acid.


Assuntos
DNA/química , RNA/química , Temperatura , Cloridrinas/química , Transferência Ressonante de Energia de Fluorescência , Glicina/química , Humanos , Metilaminas/química , Conformação de Ácido Nucleico , Pressão , Sacarose/química , Ureia/química
8.
Nucleic Acids Res ; 47(2): 981-996, 2019 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-30418613

RESUMO

We investigated the volumetric and kinetic profile of the conformational landscape of a poly dA loop DNA hairpin (Hp) in the presence of salts, osmolytes and crowding media, mimicking the intracellular milieu, using single-molecule FRET methodology. Pressure modulation was applied to explore the volumetric and hydrational characteristics of the free-energy landscape of the DNA Hp, but also because pressure is a stress factor many organisms have to cope with, e.g. in the deep sea where pressures even up to the kbar level are encountered. Urea and pressure synergistically destabilize the closed conformation of the DNA Hp due to a lower molar partial volume in the unfolded state. Conversely, multivalent salts, trimethylamine-N-oxide and Ficoll strongly populate the closed state and counteract deteriorating effects of pressure. Complementary smFRET measurements under immobilized conditions at ambient pressure allowed us to dissect the equilibrium data in terms of folding and unfolding rate constants of the conformational transitions, leading to a deeper understanding of the stabilization mechanisms of the cosolutes. Our results show that the free-energy landscape of the DNA Hp is a rugged one, which is markedly affected by the ionic strength of the solution, by preferential interaction and exclusion of cosolvents as well as by pressure.


Assuntos
DNA/química , Poli A/química , Cátions/química , Ficoll/química , Transferência Ressonante de Energia de Fluorescência , Cinética , Metilaminas/química , Conformação de Ácido Nucleico , Ureia/química
9.
Chemistry ; 24(54): 14346-14351, 2018 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-29993151

RESUMO

Organisms are thriving in the deep sea at pressures up to the 1 kbar level, which imposes severe stress on the conformational dynamics and stability of their biomolecules. The impact of osmolytes and macromolecular crowders, mimicking intracellular conditions, on the effect of pressure on the conformational dynamics of a human telomeric G-quadruplex (G4) DNA is explored in this study employing single-molecule Förster resonance energy transfer (FRET) experiments. In neat buffer, pressurization favors the parallel/hybrid state of the G4-DNA over the antiparallel conformation at ≈400 bar, finally leading to unfolding beyond 1000 bar. High-pressure NMR data support these findings. The folded topological conformers have different solvent accessible surface areas and cavity volumes, leading to different volumetric properties and hence pressure stabilities. The deep-sea osmolyte trimethylamine N-oxide (TMAO) and macromolecular crowding agents are able to effectively rescue the G4-DNA from unfolding in the whole pressure range encountered on Earth.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA