Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(24)2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38139242

RESUMO

In a eukaryotic cell, the ratio of mitochondrial DNA (mtDNA) to nuclear DNA (nDNA) is usually maintained within a specific range. This suggests the presence of a negative feedback loop mechanism preventing extensive mtDNA replication and depletion. However, the experimental data on this hypothetical mechanism are limited. In this study, we suggested that deletions in mtDNA, known to increase mtDNA abundance, can disrupt this mechanism, and thus, increase cell-to-cell variance in the mtDNA copy numbers. To test this, we generated Saccharomyces cerevisiae rho- strains with large deletions in the mtDNA and rho0 strains depleted of mtDNA. Given that mtDNA contributes to the total DNA content of exponentially growing yeast cells, we showed that it can be quantified in individual cells by flow cytometry using the DNA-intercalating fluorescent dye SYTOX green. We found that the rho- mutations increased both the levels and cell-to-cell heterogeneity in the total DNA content of G1 and G2/M yeast cells, with no association with the cell size. Furthermore, the depletion of mtDNA in both the rho+ and rho- strains significantly decreased the SYTOX green signal variance. The high cell-to-cell heterogeneity of the mtDNA amount in the rho- strains suggests that mtDNA copy number regulation relies on full-length mtDNA, whereas the rho- mtDNAs partially escape this regulation.


Assuntos
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , DNA Mitocondrial/genética , Proteínas de Saccharomyces cerevisiae/genética , Mutação
2.
Genome Biol Evol ; 15(12)2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38019573

RESUMO

Most characterized metazoan mitochondrial genomes are compact and encode a small set of proteins that are essential for oxidative phosphorylation, as well as rRNA and tRNA for their expression. However, in rare cases, invertebrate taxa have additional open reading frames (ORFs) in their mtDNA sequences. Here, we sequenced and analyzed the mitochondrial genome of a polychaete worm, Polydora cf. ciliata, part of whose life cycle takes place in low-oxygen conditions. In the mitogenome, we found three "ORFan" regions (544, 1,060, and 427 bp) that have no resemblance to any standard metazoan mtDNA gene but lack stop codons in one of the reading frames. Similar regions are found in the mitochondrial genomes of three other Polydora species and Bocardiella hamata. All five species share the same gene order in their mitogenomes, which differ from that of other known Spionidae mitogenomes. By analyzing the ORFan sequences, we found that they are under purifying selection pressure and contain conservative regions. The codon adaptation indices (CAIs) of the ORFan genes were in the same range of values as the CAI of conventional protein-coding genes in corresponding mitochondrial genomes. The analysis of the P. cf. ciliata mitochondrial transcriptome showed that ORFan-544, ORFan-427, and a portion of the ORFan-1060 are transcribed. Together, this suggests that ORFan-544 and ORFan-427 encode functional proteins. It is likely that the ORFans originated when the Polydora/Bocardiella species complex separated from the rest of the Spionidae, and this event coincided with massive gene rearrangements in their mitochondrial genomes and tRNA-Met duplication.


Assuntos
Genoma Mitocondrial , Animais , DNA Mitocondrial/genética , Sequência de Bases , Proteínas/genética , RNA de Transferência/genética , Filogenia
3.
Membranes (Basel) ; 13(10)2023 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-37888013

RESUMO

As mitochondria are negatively charged organelles, penetrating cations are used as parts of chimeric molecules to deliver specific compounds into mitochondria. In other words, they are used as electrophilic carriers for such chemical moieties as antioxidants, dyes, etc., to transfer them inside mitochondria. However, unmodified penetrating cations affect different aspects of cellular physiology as well. In this review, we have attempted to summarise the data about the side effects of commonly used natural (e.g., berberine) and artificial (e.g., tetraphenylphosphonium, rhodamine, methylene blue) penetrating cations on cellular physiology. For instance, it was shown that such types of molecules can (1) facilitate proton transport across membranes; (2) react with redox groups of the respiratory chain; (3) induce DNA damage; (4) interfere with pleiotropic drug resistance; (5) disturb membrane integrity; and (6) inhibit enzymes. Also, the products of the biodegradation of penetrating cations can be toxic. As penetrating cations accumulate in mitochondria, their toxicity is mostly due to mitochondrial damage. Mitochondria from certain types of cancer cells appear to be especially sensitive to penetrating cations. Here, we discuss the molecular mechanisms of the toxic effects and the anti-cancer activity of penetrating cations.

5.
Int J Mol Sci ; 24(20)2023 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-37894741

RESUMO

PsbS is one of the key photoprotective proteins, ensuring the tolerance of the photosynthetic apparatus (PSA) of a plant to abrupt changes in irradiance. Being a component of photosystem II, it provides the formation of quenching centers for excited states of chlorophyll in the photosynthetic antenna with an excess of light energy. The signal for "turning on" the photoprotective function of the protein is an excessive decrease in pH in the thylakoid lumen occurring when all the absorbed light energy (stored in the form of transmembrane proton potential) cannot be used for carbon assimilation. Hence, lumen-exposed protonatable amino acid residues that could serve as pH sensors are the essential components of PsbS-dependent photoprotection, and their pKa values are necessary to describe it. Previously, calculations of the lumen-exposed protonatable residue pKa values in PsbS from spinach were described in the literature. However, it has recently become clear that PsbS, although typical of higher plants and charophytes, can also provide photoprotection in green algae. Namely, the stress-induced expression of PsbS was recently shown for two green microalgae species: Chlamydomonas reinhardtii and Lobosphaera incisa. Therefore, we determined the amino acid sequence and modeled the three-dimensional structure of the PsbS from L. incisa, as well as calculated the pKa values of its lumen-exposed protonatable residues. Despite significant differences in amino acid sequence, proteins from L. incisa and Spinacia oleracea have similar three-dimensional structures. Along with the other differences, one of the two pH-sensing glutamates in PsbS from S. oleracea (namely, Glu-173) has no analogue in L. incisa protein. Moreover, there are only four glutamate residues in the lumenal region of the L. incisa protein, while there are eight glutamates in S. oleracea. However, our calculations show that, despite the relative deficiency in protonatable residues, at least two residues of L. incisa PsbS can be considered probable pH sensors: Glu-87 and Lys-196.


Assuntos
Clorófitas , Microalgas , Sequência de Aminoácidos , Microalgas/metabolismo , Complexo de Proteína do Fotossistema II/metabolismo , Clorófitas/metabolismo , Concentração de Íons de Hidrogênio , Glutamatos , Complexos de Proteínas Captadores de Luz/metabolismo
6.
Front Microbiol ; 14: 1203243, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37342567

RESUMO

In yeast, multiple (pleiotropic) drug resistance (MDR) transporters efflux xenobiotics from the cytoplasm to the environment. Additionally, upon the accumulation of xenobiotics in the cells, MDR genes are induced. At the same time, fungal cells can produce secondary metabolites with physico-chemical properties similar to MDR transporter substrates. Nitrogen limitation in yeast Saccharomyces cerevisiae leads to the accumulation of phenylethanol, tryptophol, and tyrosol, which are products of aromatic amino acid catabolism. In this study, we investigated whether these compounds could induce or inhibit MDR in yeast. Double deletion of PDR1 and PDR3 genes, which are transcription factors that upregulate the expression of PDR genes, reduced yeast resistance to high concentrations of tyrosol (4-6 g/L) but not to the other two tested aromatic alcohols. PDR5 gene, but not other tested MDR transporter genes (SNQ2, YOR1, PDR10, PDR15) contributed to yeast resistance to tyrosol. Tyrosol inhibited the efflux of rhodamine 6G (R6G), a substrate for MDR transporters. However, preincubating yeast cells with tyrosol induced MDR, as evidenced by increased Pdr5-GFP levels and reduced yeast ability to accumulate Nile red, another fluorescent MDR-transporter substrate. Moreover, tyrosol inhibited the cytostatic effect of clotrimazole, the azole antifungal. Our results demonstrate that a natural secondary metabolite can modulate yeast MDR. We speculate that intermediates of aromatic amino acid metabolites coordinate cell metabolism and defense mechanisms against xenobiotics.

7.
BMC Biol ; 21(1): 103, 2023 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-37158879

RESUMO

BACKGROUND: Aging in postmitotic tissues is associated with clonal expansion of somatic mitochondrial deletions, the origin of which is not well understood. Such deletions are often flanked by direct nucleotide repeats, but this alone does not fully explain their distribution. Here, we hypothesized that the close proximity of direct repeats on single-stranded mitochondrial DNA (mtDNA) might play a role in the formation of deletions. RESULTS: By analyzing human mtDNA deletions in the major arc of mtDNA, which is single-stranded during replication and is characterized by a high number of deletions, we found a non-uniform distribution with a "hot spot" where one deletion breakpoint occurred within the region of 6-9 kb and another within 13-16 kb of the mtDNA. This distribution was not explained by the presence of direct repeats, suggesting that other factors, such as the spatial proximity of these two regions, can be the cause. In silico analyses revealed that the single-stranded major arc may be organized as a large-scale hairpin-like loop with a center close to 11 kb and contacting regions between 6-9 kb and 13-16 kb, which would explain the high deletion activity in this contact zone. The direct repeats located within the contact zone, such as the well-known common repeat with a first arm at 8470-8482 bp (base pair) and a second arm at 13,447-13,459 bp, are three times more likely to cause deletions compared to direct repeats located outside of the contact zone. A comparison of age- and disease-associated deletions demonstrated that the contact zone plays a crucial role in explaining the age-associated deletions, emphasizing its importance in the rate of healthy aging. CONCLUSIONS: Overall, we provide topological insights into the mechanism of age-associated deletion formation in human mtDNA, which could be used to predict somatic deletion burden and maximum lifespan in different human haplogroups and mammalian species.


Assuntos
Genoma Mitocondrial , Animais , Humanos , Mitocôndrias , DNA Mitocondrial/genética , Genoma Humano , Estrutura Secundária de Proteína , DNA de Cadeia Simples , Mamíferos
8.
Mitochondrial DNA B Resour ; 8(1): 149-151, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36685650

RESUMO

Here, we report the complete mitochondrial genome of sabellid Pseudopotamilla reniformis (Bruguière, 1789) (16,408 bp) and comprised of two ribosomal RNAs, the ubiquitous set of 13 protein-coding sequences, and 22 tRNAs. The order of protein-coding genes is consistent with the proposed conserved pattern, which contradicts recent discovery in other members of the family (Sabella spallanzanii in Daffe et al., 2021 and Bispira melanostigma in Hornfeck et al., 2022).

9.
Biochemistry (Mosc) ; 88(12): 1997-2006, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38462446

RESUMO

Despite the diverse manifestations of aging across different species, some common aging features and underlying mechanisms are shared. In particular, mitochondria appear to be among the most vulnerable systems in both metazoa and fungi. In this review, we discuss how mitochondrial dysfunction is related to replicative aging in the simplest eukaryotic model, the baker's yeast Saccharomyces cerevisiae. We discuss a chain of events that starts from asymmetric distribution of mitochondria between mother and daughter cells. With age, yeast mother cells start to experience a decrease in mitochondrial transmembrane potential and, consequently, a decrease in mitochondrial protein import efficiency. This induces mitochondrial protein precursors in the cytoplasm, the loss of mitochondrial DNA (mtDNA), and at the later stages - cell death. Interestingly, yeast strains without mtDNA can have either increased or decreased lifespan compared to the parental strains with mtDNA. The direction of the effect depends on their ability to activate compensatory mechanisms preventing or mitigating negative consequences of mitochondrial dysfunction. The central role of mitochondria in yeast aging and death indicates that it is one of the most complex and, therefore, deregulation-prone systems in eukaryotic cells.


Assuntos
Doenças Mitocondriais , Proteínas de Saccharomyces cerevisiae , Humanos , Saccharomyces cerevisiae/metabolismo , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo , Mitocôndrias/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas Mitocondriais/metabolismo , Doenças Mitocondriais/metabolismo
10.
Membranes (Basel) ; 12(12)2022 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-36557185

RESUMO

Yeast S. cerevisiae has been shown to suppress a sterol biosynthesis as a response to hyperosmotic stress. In the case of sodium stress, the failure to suppress biosynthesis leads to an increase in cytosolic sodium. The major yeast sterol, ergosterol, is known to regulate functioning of plasma membrane proteins. Therefore, it has been suggested that the suppression of its biosynthesis is needed to adjust the activity of the plasma membrane sodium pumps and channels. However, as the sterol concentration is in the range of thirty to forty percent of total plasma membrane lipids, it is believed that its primary biological role is not regulatory but structural. Here we studied how lowering the sterol content affects the response of a lipid bilayer to an osmotic stress. In accordance with previous observations, we found that a decrease of the sterol fraction increases a water permeability of the liposomal membranes. Yet, we also found that sterol-free giant unilamellar vesicles reduced their volume during transient application of the hyperosmotic stress to a greater extent than the sterol-rich ones. Furthermore, our data suggest that lowering the sterol content in yeast cells allows the shrinkage to prevent the osmotic pressure-induced plasma membrane rupture. We also found that mutant yeast cells with the elevated level of sterol accumulated propidium iodide when exposed to mild hyperosmotic conditions followed by hypoosmotic stress. It is likely that the decrease in a plasma membrane sterol content stimulates a drop in cell volume under hyperosmotic stress, which is beneficial in the case of a subsequent hypo-osmotic one.

11.
Nucleic Acids Res ; 50(18): 10264-10277, 2022 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-36130228

RESUMO

The mutational spectrum of the mitochondrial DNA (mtDNA) does not resemble any of the known mutational signatures of the nuclear genome and variation in mtDNA mutational spectra between different organisms is still incomprehensible. Since mitochondria are responsible for aerobic respiration, it is expected that mtDNA mutational spectrum is affected by oxidative damage. Assuming that oxidative damage increases with age, we analyse mtDNA mutagenesis of different species in regards to their generation length. Analysing, (i) dozens of thousands of somatic mtDNA mutations in samples of different ages (ii) 70053 polymorphic synonymous mtDNA substitutions reconstructed in 424 mammalian species with different generation lengths and (iii) synonymous nucleotide content of 650 complete mitochondrial genomes of mammalian species we observed that the frequency of AH > GH substitutions (H: heavy strand notation) is twice bigger in species with high versus low generation length making their mtDNA more AH poor and GH rich. Considering that AH > GH substitutions are also sensitive to the time spent single-stranded (TSSS) during asynchronous mtDNA replication we demonstrated that AH > GH substitution rate is a function of both species-specific generation length and position-specific TSSS. We propose that AH > GH is a mitochondria-specific signature of oxidative damage associated with both aging and TSSS.


Assuntos
Envelhecimento , DNA Mitocondrial , Mamíferos , Envelhecimento/genética , Animais , DNA Mitocondrial/genética , Mamíferos/genética , Mitocôndrias/genética , Mutação , Nucleotídeos
12.
Biochim Biophys Acta Biomembr ; 1864(10): 183993, 2022 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-35724740

RESUMO

Triterpene glycosides are a diverse group of plant secondary metabolites, consisting of a sterol-like aglycon and one or several sugar groups. A number of triterpene glycosides show membranolytic activity, and, therefore, are considered to be promising antimicrobial drugs. However, the interrelation between their structure, biological activities, and target membrane lipid composition remains elusive. Here we studied the antifungal effects of four Panax triterpene glycosides (ginsenosides) with sugar moieties at the C-3 (ginsenosides Rg3, Rh2), C-20 (compound K), and both (ginsenoside F2) positions in Saccharomyces cerevisiae mutants with altered sterol plasma membrane composition. We observed reduced cytostatic activity of the Rg3 and compound K in the UPC2-1 strain with high membrane sterol content. Moreover, LAM gene deletion reduced yeast resistance to Rg3 and digitonin, another saponin with glycosylated aglycon in the C-3 position. LAM genes encode plasma membrane-anchored StARkin superfamily-member sterol transporters. We also showed that the deletion of the ERG6 gene that inhibits ergosterol biosynthesis at the stage of zymosterol increased the cytostatic effects of Rg3 and Rh2, but not the other two tested ginsenosides. At the same time, in silico simulation revealed that the substitution of ergosterol with zymosterol in the membrane changes the spatial orientation of Rg3 and Rh2 in the membranes. These results imply that the plasma membrane sterol composition defines its interaction with triterpene glycoside depending on their glycoside group position. Our results also suggest that the biological role of membrane-anchored StARkin family protein is to protect eukaryotic cells from triterpenes glycosylated at the C-3 position.


Assuntos
Citostáticos , Ginsenosídeos , Triterpenos , Ergosterol , Ginsenosídeos/metabolismo , Ginsenosídeos/farmacologia , Saccharomyces cerevisiae/genética , Esteróis , Açúcares , Triterpenos/farmacologia
13.
Front Microbiol ; 13: 816622, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35401495

RESUMO

In mitochondria, a small protein IF1 suppresses the hydrolytic activity of ATP synthase and presumably prevents excessive ATP hydrolysis under conditions of energy deprivation. In yeast Saccharomyces cerevisiae, IF1 homologs are encoded by two paralogous genes: INH1 and STF1. INH1 expression is known to aggravate the deleterious effects of mitochondrial DNA (mtDNA) depletion. Surprisingly, no beneficial effects of INH1 and STF1 were documented for yeast so far, and the functions of INH1 and STF1 in wild type cells are unclear. Here, we put forward a hypothesis that INH1 and STF1 bring advantage during the fast start of proliferation after reentry into exponential growth from post-diauxic or stationary phases. We found that yeast cells increase the concentration of both proteins in the post-diauxic phase. Post-diauxic phase yeast cells formed two subpopulations distinct in Inh1p and Stf1p concentrations. Upon exit from the post-diauxic phase cells with high level of Inh1-GFP started growing earlier than cells devoid of Inh1-GFP. However, double deletion of INH1 and STF1 did not increase the lag period necessary for stationary phase yeast cells to start growing after reinoculation into the fresh medium. These results point to a redundancy of the mechanisms preventing uncontrolled ATP hydrolysis during energy deprivation.

14.
Biochim Biophys Acta Bioenerg ; 1863(5): 148544, 2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35331734

RESUMO

Proton-translocating FOF1 ATP synthase (F-ATPase) couples ATP synthesis or hydrolysis to transmembrane proton transport in bacteria, chloroplasts, and mitochondria. The primary function of the mitochondrial FOF1 is ATP synthesis driven by protonmotive force (pmf) generated by the respiratory chain. However, when pmf is low or absent (e.g. during anoxia), FOF1 consumes ATP and functions as a proton-pumping ATPase. Several regulatory mechanisms suppress the ATPase activity of FOF1 at low pmf. In yeast mitochondria they include special inhibitory proteins Inh1p and Stf1p, and non-competitive inhibition of ATP hydrolysis by MgADP (ADP-inhibition). Presumably, these mechanisms help the cell to preserve the ATP pool upon membrane de-energization. However, no direct evidence was presented to support this hypothesis so far. Here we report that a point mutation Q263L in subunit beta of Saccharomyces cerevisiae ATP synthase significantly attenuated ADP-inhibition of the enzyme without major effect on the rate of ATP production by mitochondria. The mutation also decreased the sensitivity of the enzyme ATPase activity to azide. Similar effects of the corresponding mutations were observed in earlier studies in bacterial enzymes. This observation indicates that the molecular mechanism of ADP-inhibition is probably the same in mitochondrial and in bacterial FOF1. The mutant yeast strain had lower growth rate and had a longer lag period preceding exponential growth phase when starved cells were transferred to fresh growth medium. However, upon the loss of mitochondrial DNA (ρ0) the ßQ263L mutation effect was reversed: the ßQ263L ρ0 mutant grew faster than the wild-type ρ0 yeast. The results suggest that ADP-inhibition might play a role in prevention of wasteful ATP hydrolysis in the mitochondrial matrix.


Assuntos
Adenosina Trifosfatases , Saccharomyces cerevisiae , Difosfato de Adenosina/metabolismo , Adenosina Trifosfatases/metabolismo , Trifosfato de Adenosina/metabolismo , Mitocôndrias/metabolismo , ATPases Translocadoras de Prótons , Prótons , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
15.
Biochemistry (Mosc) ; 87(12): 1528-1534, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36717444

RESUMO

A substantial part of yeast life cycle takes place in the communities where the cells are surrounded by their own clones. Meanwhile, yeast cell fitness depends not only on its own adaptations but also on the processes in the neighboring cells. Moreover, even if a cell loses its clonogenic ability, it is still capable of protecting surrounding cells that are still alive. Dead cells can absorb lipophilic antibiotics and provide nutrients to their kin neighbors. Some enzymes can be released into the environment and detoxify exogenous toxins. For example, cytosolic catalase, which degrades hydrogen peroxide, can stay active outside of the cell. Inviable cells of pathogenic yeast species can suppress host immune responses and, in this way, boost spread of the pathogen. In this review, we speculate that biochemical processes in dying cells can facilitate increase of stress resistance in the alive kin cells and therefore be a subject of natural selection. We considered possible scenarios of how dead microbial cells can increase survival of their kin using unicellular fungi - baker's yeast Saccharomyces cerevisiae - as an example. We conclude that the evolutionary conserved mechanisms of programmed cell death in yeast are likely to include a module of early permeabilization of the cell plasma membrane rather than preserve its integrity.


Assuntos
Microbiota , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
17.
Biomolecules ; 10(9)2020 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-32962296

RESUMO

Chemicals inducing a mild decrease in the ATP/ADP ratio are considered as caloric restriction mimetics as well as treatments against obesity. Screening for such chemicals in animal model systems requires a lot of time and labor. Here, we present a system for the rapid screening of non-toxic substances causing such a de-energization of cells. We looked for chemicals allowing the growth of yeast lacking trehalose phosphate synthase on a non-fermentable carbon source in the presence of glucose. Under such conditions, the cells cannot grow because the cellular phosphate is mostly being used to phosphorylate the sugars in upper glycolysis, while the biosynthesis of bisphosphoglycerate is blocked. We reasoned that by decreasing the ATP/ADP ratio, one might prevent the phosphorylation of the sugars and also boost bisphosphoglycerate synthesis by providing the substrate, i.e., inorganic phosphate. We confirmed that a complete inhibition of oxidative phosphorylation alleviates the block. As our system includes a non-fermentable carbon source, only the chemicals that did not cause a complete block of mitochondrial ATP synthesis allowed the initial depletion of glucose followed by respiratory growth. Using this system, we found two novel compounds, dodecylmethyl diphenylamine (FS1) and diethyl (tetradecyl) phenyl ammonium bromide (Kor105), which possess a mild membrane-depolarizing activity.


Assuntos
Trifosfato de Adenosina/metabolismo , Cátions/metabolismo , Glucose/metabolismo , Glucosiltransferases/metabolismo , Glicólise , Saccharomyces cerevisiae/metabolismo , Difosfato de Adenosina/metabolismo , Animais , Ácidos Difosfoglicéricos/metabolismo , Glucosiltransferases/genética , Mitocôndrias/metabolismo , Mitocôndrias Hepáticas/metabolismo , Modelos Biológicos , Fosforilação Oxidativa , Consumo de Oxigênio , Fosfatos/metabolismo , Ratos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento
18.
J Bioenerg Biomembr ; 52(5): 383-395, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32808242

RESUMO

Pleiotropic drug resistance (PDR) plasma membrane transporters mediate xenobiotic efflux from the cells and thereby help pathogenic microorganisms to withstand antimicrobial therapies. Given that xenobiotic efflux is an energy-consuming process, cells with upregulated PDR can be sensitive to perturbations in cellular energetics. Protonophores dissipate proton gradient across the cellular membranes and thus increase ATP spendings to their maintenance. We hypothesised that chronic exposure of yeast cells to the protonophores can favour the selection of cells with inactive PDR. To test this, we measured growth rates of the wild type Saccharomyces cerevisiae and PDR-deficient Δpdr1Δpdr3 strains in the presence of protonophores carbonyl cyanide-p-trifluoromethoxyphenylhydrazone (FCCP), pentachlorophenol (PCP) and niclosamide (NCA). Although the protonophore-induced respiration rates of these two strains were similar, the PDR-deficient strain outperformed the control one in the growth rate on non-fermentable carbon source supplemented with low concentrations of FCCP. Thus, active PDR can be deleterious under conditions of partially uncoupled oxidative-phosphorylation. Furthermore, our results suggest that tested anionic protonophores are poor substrates of PDR-transporters. At the same time, protonophores imparted azole tolerance to yeasts, pointing that they are potent PDR inducers. Interestingly, protonophore PCP led to a persistent increase in the levels of a major ABC-transporter Pdr5p, while azole clotrimazole induced only a temporary increase. Together, our data provides an insight into the effects of the protonophores in the eukaryotes at the cellular level and support the idea that cells with activated PDR can be selected out upon conditions of energy limitations.


Assuntos
Carbonil Cianeto p-Trifluormetoxifenil Hidrazona/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Transporte Biológico
19.
Eur J Cell Biol ; 99(2-3): 151071, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32057484

RESUMO

The mitochondrial network structure dynamically adapts to cellular metabolic challenges. Mitochondrial depolarisation, particularly, induces fragmentation of the network. This fragmentation may be a result of either a direct regulation of the mitochondrial fusion machinery by transmembrane potential or an indirect effect of metabolic remodelling. Activities of ATP synthase and adenine nucleotide translocator (ANT) link the mitochondrial transmembrane potential with the cytosolic NTP/NDP ratio. Given that mitochondrial fusion requires cytosolic GTP, a decrease in the NTP/NDP ratio might also account for protonophore-induced mitochondrial fragmentation. For evaluating the contributions of direct and indirect mechanisms to mitochondrial remodelling, we assessed the morphology of the mitochondrial network in yeast cells with inhibited ANT. We showed that the repression of AAC2 (PET9), a major ANT gene in yeast, increases mitochondrial transmembrane potential. However, the mitochondrial network in this strain was fragmented. Meanwhile, AAC2 repression did not prevent mitochondrial fusion in zygotes; nor did it inhibit mitochondrial hyperfusion induced by Dnm1p inhibitor mdivi-1. These results suggest that the inhibition of ANT, rather than preventing mitochondrial fusion, facilitates mitochondrial fission. The protonophores were not able to induce additional mitochondrial fragmentation in an AAC2-repressed strain and in yeast cells with inhibited ATP synthase. Importantly, treatment with the ATP synthase inhibitor oligomycin A also induced mitochondrial fragmentation and hyperpolarization. Taken together, our data suggest that ATP/ADP translocation plays a crucial role in shaping of the mitochondrial network and exemplify that an increase in mitochondrial membrane potential does not necessarily oppose mitochondrial fragmentation.


Assuntos
Nucleotídeos de Adenina/genética , Sequência de Aminoácidos/genética , Translocação Genética/genética , Humanos , Dinâmica Mitocondrial
20.
Front Microbiol ; 11: 38, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32047490

RESUMO

Lam proteins transport sterols between the membranes of different cellular compartments. In Saccharomyces cerevisiae, the LAM gene family consists of three pairs of paralogs. Because the function of paralogous genes can be redundant, the phenotypes of only a small number of LAM gene deletions have been reported; thus, the role of these genes in yeast physiology is still unclear. Here, we surveyed the phenotypes of double and quadruple deletants of paralogous LAM2(YSP2)/LAM4 and LAM1(YSP1)/LAM3(SIP3) genes that encode proteins localized in the junctions of the plasma membrane and endoplasmic reticulum. The quadruple deletant showed increased sterol content and a strong decrease in ethanol, heat shock and high osmolarity resistance. Surprisingly, the quadruple deletant and LAM2/LAM4 double deletion strain showed increased tolerance to the azole antifungals clotrimazole and miconazole. This effect was not associated with an increased rate of ABC-transporter substrate efflux. Possibly, increased sterol pool in the LAM deletion strains postpones the effect of azoles on cell growth. Alternatively, LAM deletions might alleviate the toxic effect of sterols as Lam proteins can transport toxic sterol biosynthesis intermediates into membrane compartments that are sensitive to these compounds. Our findings reveal novel biological roles of LAM genes in stress tolerance and suggest that mutations in these genes may confer upregulation of a mechanism that provides resistance to azole antifungals in pathogenic fungi.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA