Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Biol Chem ; 294(42): 15517-15530, 2019 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-31488547

RESUMO

CTP:phosphocholine cytidylyltransferase (CCT), the rate-limiting enzyme in phosphatidylcholine (PC) synthesis, is an amphitropic enzyme that regulates PC homeostasis. Recent work has suggested that CCTα activation by binding to a PC-deficient membrane involves conformational transitions in a helix pair (αE) that, along with a short linker of unknown structure (J segment), bridges the catalytic domains of the CCTα dimer to the membrane-binding (M) domains. In the soluble, inactive form, the αE helices are constrained into unbroken helices by contacts with two auto-inhibitory (AI) helices from domain M. In the active, membrane-bound form, the AI helices are displaced and engage the membrane. Molecular dynamics simulations have suggested that AI displacement is associated with hinge-like bending in the middle of the αE, positioning its C terminus closer to the active site. Here, we show that CCTα activation by membrane binding is sensitive to mutations in the αE and J segments, especially within or proximal to the αE hinge. Substituting Tyr-213 within this hinge with smaller uncharged amino acids that could destabilize interactions between the αE helices increased both constitutive and lipid-dependent activities, supporting a link between αE helix bending and stimulation of CCT activity. The solvent accessibilities of Tyr-213 and Tyr-216 suggested that these tyrosines move to new partially buried environments upon membrane binding of CCT, consistent with a folded αE/J structure. These data suggest that signal transduction through the modular αE helix pair relies on shifts in its conformational ensemble that are controlled by the AI helices and their displacement upon membrane binding.


Assuntos
Colina-Fosfato Citidililtransferase/química , Colina-Fosfato Citidililtransferase/metabolismo , Sequência de Aminoácidos , Catálise , Domínio Catalítico , Membrana Celular/química , Membrana Celular/enzimologia , Membrana Celular/genética , Colina-Fosfato Citidililtransferase/genética , Humanos , Simulação de Dinâmica Molecular , Mutação , Fosfatidilcolinas/metabolismo , Conformação Proteica em alfa-Hélice , Domínios Proteicos , Alinhamento de Sequência
2.
J Biol Chem ; 294(42): 15531-15543, 2019 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-31488548

RESUMO

The rate-limiting step in the biosynthesis of the major membrane phospholipid, phosphatidylcholine, is catalyzed by CTP:phosphocholine cytidylyltransferase (CCT), which is regulated by reversible membrane binding of a long amphipathic helix (domain M). The M domain communicates with the catalytic domain via a conserved ∼20-residue linker, essential for lipid activation of CCT. Previous analysis of this region (denoted as the αEC/J) using MD simulations, cross-linking, mutagenesis, and solvent accessibility suggested that membrane binding of domain M promotes remodeling of the αEC/J into a more compact structure that is required for enzyme activation. Here, using tryptophan fluorescence quenching, we show that the allosteric linker lies superficially on the membrane surface. Analyses with truncated CCTs show that the αEC/J can interact with lipids independently of the M domain. We observed strong FRET between engineered tryptophans in the αEC/J and vesicles containing dansyl-phosphatidylethanolamine that depended on the native J sequence. These data are incompatible with the extended conformation of the αE helix observed in the previously determined crystal structure of inactive CCT but support a bent αE helix conformation stabilized by J segment interactions. Our results suggest that the membrane-adsorbed, folded allosteric linker may partially cover the active site cleft and pull it close to the membrane surface, where cytidyl transfer can occur efficiently in a relatively anhydrous environment.


Assuntos
Membrana Celular/enzimologia , Colina-Fosfato Citidililtransferase/química , Colina-Fosfato Citidililtransferase/metabolismo , Sítio Alostérico , Biocatálise , Domínio Catalítico , Membrana Celular/química , Membrana Celular/genética , Colina-Fosfato Citidililtransferase/genética , Ativação Enzimática , Humanos , Lipídeos/química , Modelos Moleculares , Conformação Proteica em alfa-Hélice , Domínios Proteicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA