Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Biophys J ; 2024 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-38221759

RESUMO

Syntaxin1a (Syx1a) is essential for stimulated exocytosis in neuroendocrine cells. The vesicle docking process involves the formation of nanoscale Syx1a domains on the plasma membrane and the Syx1a clusters disintegrate during the fusion process. Syx1a nanodomains are static yet Syx1a molecules dynamically enter and leave the domains; the process by which these clusters maintain this balance is unclear. In this work, the dynamics of the Syx1a molecules is elucidated relative to the cluster position through a labeling strategy that allows both the bulk position of the Syx clusters to be visualized concurrent with the trajectories of single Syx1a molecules on the surface of PC12 cells. Single Syx1a molecules were tracked in time relative to cluster positions to decipher how Syx1a moves within a cluster and when clusters are not present. Syx1a is mobile on the plasma membrane, more mobile at the center of clusters, and less mobile near the edges of clusters; this depends on the presence of the N-terminal Habc domain and cholesterol, which are essential for proper exocytosis. Simulations of the dynamics observed at clusters support a model where clusters are maintained by a large cage (r = 100 nm) within which Syx1a remains highly mobile within the cluster (r = 50 nm). The depletion of cholesterol dramatically reduces the mobility of Syx1a within clusters and less so over the rest of the plasma membrane. This suggests that fluidity of Syx1a supramolecular clusters is needed for function.

2.
Mol Biol Cell ; 35(3): ar39, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38117597

RESUMO

Phospholipase D1 (PLD1) activity is essential for the stimulated exocytosis of secretory vesicles where it acts as a lipid-modifying enzyme to produces phosphatidic acid (PA). PLD1 localizes to the plasma membrane and secretory vesicles, and PLD1 inhibition or knockdowns reduce the rate of fusion. However, temporal data resolving when and where PLD1 and PA are required during exocytosis is lacking. In this work, PLD1 and production of PA are measured during the trafficking, docking, and fusion of secretory vesicles in PC12 cells. Using fluorescently tagged PLD1 and a PA-binding protein, cells were imaged using TIRF microscopy to monitor the presence of PLD1 and the formation of PA throughout the stages of exocytosis. Single docking and fusion events were imaged to measure the recruitment of PLD1 and the formation of PA. PLD1 is present on mobile, docking, and fusing vesicles and also colocalizes with Syx1a clusters. Treatment of cells with PLD inhibitors significantly reduces fusion, but not PLD1 localization to secretory vesicles. Inhibitors also alter the formation of PA; when PLD1 is active, PA slowly accumulates on docked vesicles. During fusion, PA is reduced in cells treated with PLD1 inhibitors, indicating that PLD1 produces PA during exocytosis.


Assuntos
Ácidos Fosfatídicos , Fosfolipase D , Ratos , Animais , Ácidos Fosfatídicos/metabolismo , Transporte Biológico , Membrana Celular/metabolismo , Vesículas Secretórias/metabolismo , Fosfolipase D/metabolismo , Exocitose/fisiologia
3.
Biophys J ; 122(7): 1301-1314, 2023 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-36814381

RESUMO

When multivesicular endosomes (MVEs) fuse with the plasma membrane, exosomes are released into the extracellular space where they can affect other cells. The ability of exosomes to regulate cells nearby or further away depends on whether they remain attached to the secreting cell membrane. The regulation and kinetics of exosome secretion are not well characterized, but probes for directly imaging single MVE fusion events have allowed for visualization of the fusion and release process. In particular, the design of an exosome marker with a pH-sensitive dye in the middle of the tetraspanin protein CD63 has facilitated studies of individual MVE fusion events. Using TIRF microscopy, single fusion events were measured in A549 cells held at 23-37°C and events were identified using an automated detection algorithm. Stable docking precedes fusion almost always and a decrease in temperature was accompanied by decrease in the rate of content loss and in the frequency of fusion events. The loss of CD63-pHluorin fluorescence was measured at fusion sites and fit with a single or double exponential decay, with most events requiring two components and a plateau because the loss of fluorescence was typically incomplete. To interpret the kinetics, fusion events were simulated as a localized release of tethered/untethered exosomes coupled with the membrane diffusion of CD63. The experimentally observed decay required three components in the simulation: 1) free exosomes, 2) CD63 membrane diffusion from the endosomal membrane into the plasma membrane, and 3) tethered exosomes. Modeling with slow diffusion of the tethered exosomes (0.0015-0.004 µm2/s) accurately fits the experimental data for all temperatures. However, simulating with immobile tethers or the absence of tethers fails to replicate the data. Our model suggests that exosome release from the fusion site is incomplete due to postfusion, membrane attachment.


Assuntos
Exossomos , Exossomos/metabolismo , Temperatura , Tetraspanina 30/metabolismo , Endossomos/metabolismo , Corpos Multivesiculares/metabolismo
4.
Biomolecules ; 12(11)2022 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-36421720

RESUMO

Phosphatidic acid (PA) is a signaling lipid that is produced enzymatically from phosphatidylcholine (PC), lysophosphatidic acid, or diacylglycerol. Compared to PC, PA lacks a choline moiety on the headgroup, making the headgroup smaller than that of PC and PA, and PA has a net negative charge. Unlike the cylindrical geometry of PC, PA, with its small headgroup relative to the two fatty acid tails, is proposed to support negatively curved membranes. Thus, PA is thought to play a role in a variety of biological processes that involve bending membranes, such as the formation of intraluminal vesicles in multivesicular bodies and membrane fusion. Using supported tubulated lipid bilayers (STuBs), the extent to which PA localizes to curved membranes was determined. STuBs were created via liposome deposition with varying concentrations of NaCl (500 mM to 1 M) on glass to form supported bilayers with connected tubules. The location of fluorescently labeled lipids relative to tubules was determined by imaging with total internal reflection or confocal fluorescence microscopy. The accumulation of various forms of PA (with acyl chains of 16:0-6:0, 16:0-12:0, 18:1-12:0) were compared to PC and the headgroup labeled phosphatidylethanolamine (PE), a lipid that has been shown to accumulate at regions of curvature. PA and PE accumulated more at tubules and led to the formation of more tubules than PC. Using large unilamellar liposomes in a dye-quenching assay, the location of the headgroup labeled PE was determined to be mostly on the outer, positively curved leaflet, whereas the tail labeled PA was located more on the inner, negatively curved leaflet. This study demonstrates that PA localizes to regions of negative curvature in liposomes and supports the formation of curved, tubulated membranes. This is one way that PA could be involved with curvature formation during a variety of cell processes.


Assuntos
Bicamadas Lipídicas , Ácidos Fosfatídicos , Lecitinas , Lipossomas Unilamelares , Fusão de Membrana
5.
BBA Adv ; 2: 100058, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-37082597

RESUMO

C-reactive protein (CRP) is commonly measured as an inflammatory marker in patient studies for coronary heart disease, autoimmune disease and recent acute infections. Due to a correlation of CRP to a vast number of disease states, CRP is a well-studied protein in medical literature with over 16000 references in PubMed [1]. However, the biochemical and structural variations of CRP are not well understood in regards to their binding of complement immune response proteins. Conformations of CRP are thought to affect disease states differently, with a modified form showing neoepitopes and activating the complement immune response through C1q binding. In this work, we compare the unfolding of CRP using chemical denaturants and identify which states of CRP bind a downstream complement immune response binding partner (C1q). We used guanidine HCl (GndHCl), urea/EDTA, and 0.01% SDS with heat to perturb the pentameric state. All treatments give rise to a monomeric state in non-denaturing polyacrylamide gel electrophoresis experiments, but only treatment with certain concentrations of denaturant or dilute SDS with heat maintains CRP function with a key downstream binding partner, C1q, as measured by enzyme-linked immunosorbent assays. The results suggest that the final form of modified CRP and its ability to mimic biological binding is dependent on the preparation method.

6.
BBA Adv ; 1: 100026, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-37082018

RESUMO

The addition of fluorescent dyes to proteins, lipids and other biological molecules can affect a range of processes such as mobility, molecular interactions, localization, and, ultimately, function. The dynamics of a protein can be dramatically affected if the label interacts non-specifically with the substrate or with other molecules in the system. To test how dye-substrate interactions affect protein diffusion, fluorescence recovery after photobleaching (FRAP) measurements were designed to explicitly determine the role of the dye on the diffusion of a transmembrane protein, Syntaxin1a, expressed on the cell surface. Syntaxin1a, was tagged with EGFP on the extracellular side and an EGFP nanobody with or without a dye label was attached. FRAP was performed on Syx1a-EGFP and the choice of cell growth substrate affected mobility in the presence of a dye labeled nanobody. This work provides evidence for choosing fibronectin (Fn) over poly-L-lysine (PLL) in FRAP and single molecule tracking measurements when using Alexa594, a common probe for red fluorescent measurements. Alexa594-labeled nanobody but not unlabeled nanobody, dramatically reduced the mobility of Syx1a-EGFP when cells were cultured on PLL. However, when Fn was used, the mobility returned. Mobility measured by single molecule tracking measurements align with the FRAP measurements with Fn coated surfaces being more mobile than PLL.

7.
Anal Bioanal Chem ; 410(4): 1389-1396, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29214534

RESUMO

Lactoferrin (LF) is an important multifunctional protein that comprises a large fraction of the protein mass in certain human fluids and tissues, and its concentration is often used to assess health and disease. LF can be nitrated by multiple routes, leading to changes in protein structure, and nitrated proteins can negatively impact physiological health via nitrosative stress. Despite an awareness of the detrimental effects of nitrated proteins and the importance of LF within the body, cost-effective methods for detecting and quantifying nitrated lactoferrin (NLF) are lacking. We developed a procedure to selectively quantify NLF using sandwich enzyme-linked immunosorbent assay (ELISA), utilizing a polyclonal anti-LF capture antibody paired with a monoclonal anti-nitrotyrosine detector antibody. The assay was applied to quantify NLF in samples of pure LF nitrated via two separate reactions at molar ratios of excess nitrating agent to the total number of tyrosine residues between 10/1 and 100/1. Tetranitromethane (TNM) was used as a laboratory surrogate for an environmental pathway selective for production of 3-nitrotyrosine, and sodium peroxynitrite (ONOO-) was used as a surrogate for an endogenous nitration pathway. UV-vis spectroscopy (increased absorbance at 350 nm) and fluorescence spectroscopy (emission decreased by > 96%) for each reaction indicate the production of NLF. A lower limit of NLF detection using the ELISA method introduced here was calculated to be 0.065 µg mL-1, which will enable the detection of human-physiologically relevant concentrations of NLF. Our approach provides a relatively inexpensive and practical way to assess NLF in a variety of systems. Graphical abstract We developed a procedure to selectively quantify nitrated lactoferrin (NLF) protein using a sandwich enzyme-linked immunosorbent assay (ELISA) and verified results against several spectroscopic techniques. Our approach provides an inexpensive and practical way to assess NLF in a variety of systems.


Assuntos
Exposição Ambiental , Ensaio de Imunoadsorção Enzimática/métodos , Lactoferrina/análise , Nitratos/química , Doença , Humanos , Espectrometria de Fluorescência , Espectrofotometria Ultravioleta
8.
Membranes (Basel) ; 7(1)2017 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-28294967

RESUMO

The plasma membrane is a highly compartmentalized, dynamic material and this organization is essential for a wide variety of cellular processes. Nanoscale domains allow proteins to organize for cell signaling, endo- and exocytosis, and other essential processes. Even in the absence of proteins, lipids have the ability to organize into domains as a result of a variety of chemical and physical interactions. One feature of membranes that affects lipid domain formation is membrane curvature. To directly test the role of curvature in lipid sorting, we measured the accumulation of two similar lipids, 1,2-Dihexadecanoyl-sn-glycero-3-phosphoethanolamine (DHPE) and hexadecanoic acid (HDA), using a supported lipid bilayer that was assembled over a nanopatterned surface to obtain regions of membrane curvature. Both lipids studied contain 16 carbon, saturated tails and a head group tag for fluorescence microscopy measurements. The accumulation of lipids at curvatures ranging from 28 nm to 55 nm radii was measured and fluorescein labeled DHPE accumulated more than fluorescein labeled HDA at regions of membrane curvature. We then tested whether single biotinylated DHPE molecules sense curvature using single particle tracking methods. Similar to groups of fluorescein labeled DHPE accumulating at curvature, the dynamics of single molecules of biotinylated DHPE was also affected by membrane curvature and highly confined motion was observed.

9.
J Phys Chem B ; 121(12): 2631-2639, 2017 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-28225631

RESUMO

C-reactive protein (CRP) is a serum protein that binds to damaged membranes through a phosphatidylcholine binding site. The membrane binding process can initiate the complement immune response and facilitates the clearance of apoptotic cells, likely aiding in the protection of autoimmunity. The initiation of an immune response relies on a conformation change from a native, pentameric form to a modified form, where the modified form binds complement proteins (i.e., C1q) and regulatory proteins substantially better than the native form. In vitro, this reactivity is observed when CRP is monomeric, and a modified form has also been observed at sites of inflammation. Despite evidence that the monomeric form has much higher affinities for almost all proteinaceous binding partners, the role of CRP conformation on lipid binding is yet unknown. In this work, we mimic the outer leaflet of apoptotic cell membranes using a nanopatterned substrate to create curved, supported lipid bilayers and then characterize how CRP conformation affects the interactions between CRP and target membranes. In this assay, the chemical composition and shape are separately tunable parameters. The lipids consisted primarily of palmitoyloleoylphosphatidylcholine, with and without lysophosphatidylcholine, and the curvature had a radius of 27-55 nm. Using this model system combined with quantitative fluorescence microscopy methods, CRP binding to lipid membranes was measured as a function of different conformations of CRP. The modified form of CRP bound curved membranes, but the pentameric form did not for the range of curvatures measured. Unlike most other curvature-sensing proteins, modified CRP accumulated more at a moderate curvature, rather than highly curved or flat regions, suggesting that the membrane bound form does not solely depend on a defect binding mechanism. The presence of lysophosphatidylcholine, a component of apoptotic membranes, increased CRP binding to all types of membranes. Overall, our results show that CRP interactions vary with protein form, lipid composition, and membrane shape. The mechanism by which CRP recognizes damaged membranes depends on the combination of all three.


Assuntos
Apoptose , Proteína C-Reativa/metabolismo , Membrana Celular/metabolismo , Bicamadas Lipídicas/metabolismo , Proteína C-Reativa/química , Humanos , Lisofosfatidilcolinas/metabolismo , Ligação Proteica , Conformação Proteica
10.
J Colloid Interface Sci ; 487: 336-347, 2017 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-27794234

RESUMO

Gold nanoparticles (GNPs) have a wide range of properties with potential applications in electronics, optics, catalysis, and sensing. In order to demonstrate that dense, stable, and portable samples could be created for these applications, multiple layers of GNPs were assembled via drop casting on glass substrates by layer-by-layer (LBL) techniques. Two cationic polyelectrolytes, poly(diallyldimethylammonium chloride) and polyethyleneimine, one anionic polyelectrolyte, poly(sodium 4-styrene sulfonate), and one neutral polymer, polyvinylpyrrolidone, were combined with four different shapes of GNPs (spherical, rod, triangular prismatic, and octahedral) to prepare thin films. A subset of these polymer nanoparticle combinations were assembled into thin films. Synthesized GNPs were characterized via dynamic light scattering, UV-vis spectroscopy, and transmission electron microscopy and the LBL thin films were characterized using UV-vis spectroscopy and atomic force microscopy. Sensing applications of the nanoparticles in solution and thin films were tested by monitoring the localized surface plasmon resonance of the GNPs. LBL thin films were prepared ranging from 25 to 100 layers with optical densities at plasmon from 0.5 to 3.0. Sensitivity in solutions ranged from 14 to 1002nm/refractive index units (RIU) and films ranged from 18.8 to 135.1nm/RIU suggesting reduced access to the GNPs within the films.

11.
Biochem Mol Biol Educ ; 43(1): 52-9, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25395254

RESUMO

Fluorescent proteins are commonly used in cell biology to assess where proteins are within a cell as a function of time and provide insight into intracellular protein function. However, the usefulness of a fluorescent protein depends directly on the quantum yield. The quantum yield relates the efficiency at which a fluorescent molecule converts absorbed photons into emitted photons and it is necessary to know for assessing what fluorescent protein is the most appropriate for a particular application. In this work, we have designed an upper-level, biochemistry laboratory experiment where students measure the fluorescence quantum yields of fluorescent proteins relative to a standard organic dye. Four fluorescent protein variants, enhanced cyan fluorescent protein (ECFP), enhanced green fluorescent protein (EGFP), mCitrine, and mCherry, were used, however the methods described are useful for the characterization of any fluorescent protein or could be expanded to fluorescent quantum yield measurements of organic dye molecules. The laboratory is designed as a guided inquiry project and takes two, 4 hr laboratory periods. During the first day students design the experiment by selecting the excitation wavelength, choosing the standard, and determining the concentration needed for the quantum yield experiment that takes place in the second laboratory period. Overall, this laboratory provides students with a guided inquiry learning experience and introduces concepts of fluorescence biophysics into a biochemistry laboratory curriculum.


Assuntos
Bioquímica/educação , Biofísica/educação , Pesquisa/educação , Fluorescência , Proteínas de Fluorescência Verde/química , Humanos
12.
Soft Matter ; 10(12): 2016-23, 2014 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-24652483

RESUMO

Cellular membranes contain a variety of shapes that likely act as motifs for sorting lipids and proteins. To understand the sorting that takes place within cells, a continuous, fluid bilayer with regions of membrane curvature was designed and characterized using confocal fluorescence and total internal reflection fluorescence microscopy techniques. A supported lipid bilayer was formed over fluorescently labelled nanoparticles deposited on a glass surface. The lipid composition and membrane shape are separately controlled and the nanoparticle dimensions (d = 40-200 nm) determine the extent of curvature. The bulk membrane is fluid as demonstrated by fluorescence recovery after photobleaching (FRAP) using dye labelled lipids. In bilayers that contain fluorescently labelled, single-tailed lipids, accumulation is observed at regions of curvature, yet the molecules retain fluidity. Using single particle imaging methods, lipids are observed to visit regions of curvature and exchange with the surrounding flat membrane. The nanoparticle patterned substrate described here allows for quantitative measurement of the transient interactions between fluorescently labelled biomolecules and regions of membrane curvature.


Assuntos
Membrana Celular/química , Lipídeos/química , Nanopartículas/química , Proteínas/química , Recuperação de Fluorescência Após Fotodegradação , Bicamadas Lipídicas/química , Fluidez de Membrana , Especificidade por Substrato
13.
Artigo em Inglês | MEDLINE | ID: mdl-23366596

RESUMO

P-glycoprotein transports chemotherapy drugs from the plasma membrane and allows cancer cells to survive treatment. We transiently transfected PGP labeled with enhanced green fluorescent protein (PGP-EGFP) into MES-SA cells and used single molecule tracking techniques to characterize the dynamics on the surface of live cells. PGP exhibits freely diffusive behavior at short times and is confined at long times with a transition to anomalous diffusion at 0.7 s.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/genética , Linhagem Celular , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Humanos , Microscopia Confocal , Microscopia de Fluorescência
14.
Anal Bioanal Chem ; 401(4): 1309-18, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21725632

RESUMO

Native C-reactive protein (CRP) is composed of five identical subunits arranged in a pentameric structure (pCRP). Binding of pCRP to damaged cell membranes produces a second isoform, modified CRP, which has similar antigenicity to isolated monomeric subunits of CRP (mCRP). Emerging evidence indicates that modified CRP plays a role in inflammation and atherosclerosis, however, there are very few techniques that can distinguish the different isoforms of CRP. Here we show that an RNA aptamer binds specifically to mCRP and not to pCRP. Using this aptamer, we describe a simple, fast, and sensitive assay to detect nanomolar concentrations of mCRP using fluorescence anisotropy. In addition, we show that this aptamer can be used to detect mCRP in polyacrylamide gels and bound to a surface using total internal reflection fluorescence microscopy. The biological activity of the mCRP we prepared by heating pCRP with 0.1% sodium dodecyl sulfate was confirmed by observing binding to the complement protein, C1q. This probe provides an important tool for CRP research and has the potential to improve clinical diagnostics that predict risk for cardiovascular disease.


Assuntos
Aptâmeros de Nucleotídeos/química , Aptâmeros de Nucleotídeos/metabolismo , Proteína C-Reativa/química , Proteína C-Reativa/metabolismo , Isoformas de Proteínas/química , Eletroforese em Gel Bidimensional , Polarização de Fluorescência , Humanos , Limite de Detecção , Ligação Proteica , Isoformas de Proteínas/metabolismo , Fatores de Tempo
15.
J Chem Phys ; 122(23): 234909, 2005 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-16008489

RESUMO

Experimental characterization of the dynamics of multicomponent fluids is a problem of general importance to the field of complex fluids. We demonstrate a new experimental approach, termed two-color Fourier imaging correlation spectroscopy, which allows direct measurement of the partial dynamic structure factors, S(11)(k,tau), S(22)(k,tau), and S(12)(k,tau), where 1, 2 label the component species of a binary colloidal suspension. Linear combinations of the partial dynamic structure factors yield the characteristic time-correlation functions of the binary fluid. These are the correlation functions of concentration fluctuations S(CC)(k,tau), number density fluctuations S(NN)(k,tau), and cross-correlations between number density and concentration fluctuations S(NC)(k,tau). Test measurements are performed on a dilute symmetric mixture of fluorescently labeled 0.5 and 1.0 microm polystyrene spheres. From these data, we determine generalized collective and relative diffusion coefficients, and compare them to the predictions for an ideal mixture of noninteracting particles.


Assuntos
Algoritmos , Coloides/análise , Coloides/química , Teste de Materiais/métodos , Microscopia de Fluorescência por Excitação Multifotônica/métodos , Modelos Químicos , Modelos Moleculares , Nefelometria e Turbidimetria/métodos , Espectrometria de Fluorescência/métodos , Simulação por Computador , Difusão
16.
Proc Natl Acad Sci U S A ; 99(23): 14772-7, 2002 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-12417764

RESUMO

Subcellular organelle dynamics are strongly influenced by interactions with cytoskeletal filaments and their associated motor proteins, and lead to complex multiexponential relaxations that occur over a wide range of spatial and temporal scales. Here we report spatio-temporal measurements of the fluctuations of the mitochondrial reticulum in osteosarcoma cells by using Fourier imaging correlation spectroscopy, over time and distance scales of 10(-2) to 10(3) s and 0.5-2.5 microm. We show that the method allows a more complete description of mitochondrial dynamics, through the time- and length-scale-dependent collective diffusion coefficient D(k,tau), than available by other means. Addition of either nocodazole to disrupt microtubules or cytochalasin D to disassemble microfilaments simplifies the intermediate scattering function. When both drugs are used, the reticulum morphology of mitochondria is retained even though the cytoskeletal elements have been de-polymerized. The dynamics of the organelle are then primarily diffusive and can be modeled as a collection of friction points interconnected by elastic springs. This study quantitatively characterizes organelle dynamics in terms of collective cytoskeletal interactions in living cells.


Assuntos
Citoesqueleto/ultraestrutura , Mitocôndrias/ultraestrutura , Citoesqueleto de Actina/efeitos dos fármacos , Citoesqueleto de Actina/ultraestrutura , Neoplasias Ósseas , Citocalasina B/farmacologia , Análise de Fourier , Humanos , Microtúbulos/efeitos dos fármacos , Microtúbulos/ultraestrutura , Nocodazol/farmacologia , Osteossarcoma , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA