Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-37584373

RESUMO

Summary: Traditional guidelines for type 1 diabetics do not restrict carbohydrates to improve clinical outcomes for patients. This paper highlights the favorable blood glucose control outcomes when a type 1 diabetic focuses on caloric intake from protein and healthy fats instead of the traditional carbohydrate-focused meals. We followed a male type 1 diabetic in his 20s adopting a ketogenic diet through a process of slowly lowering total daily carbohydrate intake. Diabetes-related biomarkers were measured throughout the process. Diabetes-related biomarkers saw massive improvements and ended up in the official non-diabetic range. Total daily insulin requirements dropped by 70%. The patient also experienced great improvements in his quality of life. This study demonstrates the possibility of improving diabetes-related biomarkers through dietary changes, which have positive effects on health outcomes in patients living with this disease. Learning points: The adaptation of a ketogenic diet improved diabetes-related biomarkers in this patient. Diabetes-related biomarkers, such as HbA1c, are the main risk factors for developing complications in diabetics. The ketogenic diet is a feasible approach to minimizing the risk of developing complications in diabetics. Total daily insulin requirements dropped by 67% adapting a ketogenic diet. The patient experienced enormous changes in the quality of life after adapting to the new diet. The safe and physiological state of ketosis might be associated with additional benefits for the patient.

2.
bioRxiv ; 2023 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-37461539

RESUMO

Cryptic fungal pathogens pose significant identification and disease management challenges due to their morphological resemblance to known pathogenic species while harboring genetic and (often) infectionrelevant trait differences. The cryptic fungal pathogen Aspergillus latus, an allodiploid hybrid originating from Aspergillus spinulosporus and an unknown close relative of Aspergillus quadrilineatus within section Nidulantes, remains poorly understood. The absence of accurate diagnostics for A. latus has led to misidentifications, hindering epidemiological studies and the design of effective treatment plans. We conducted an in-depth investigation of the genomes and phenotypes of 44 globally distributed isolates (41 clinical isolates and three type strains) from Aspergillus section Nidulantes. We found that 21 clinical isolates were A. latus; notably, standard methods of pathogen identification misidentified all A. latus isolates. The remaining isolates were identified as A. spinulosporus (8), A. quadrilineatus (1), or A. nidulans (11). Phylogenomic analyses shed light on the origin of A. latus, indicating one or two hybridization events gave rise to the species during the Miocene, approximately 15.4 to 8.8 million years ago. Characterizing the A. latus pangenome uncovered substantial genetic diversity within gene families and biosynthetic gene clusters. Transcriptomic analysis revealed that both parental genomes are actively expressed in nearly equal proportions and respond to environmental stimuli. Further investigation into infection-relevant chemical and physiological traits, including drug resistance profiles, growth under oxidative stress conditions, and secondary metabolite biosynthesis, highlight distinct phenotypic profiles of the hybrid A. latus compared to its parental and closely related species. Leveraging our comprehensive genomic and phenotypic analyses, we propose five genomic and phenotypic markers as diagnostics for A. latus species identification. These findings provide valuable insights into the evolutionary origin, genomic outcome, and phenotypic implications of hybridization in a cryptic fungal pathogen, thus enhancing our understanding of the underlying processes contributing to fungal pathogenesis. Furthermore, our study underscores the effectiveness of extensive genomic and phenotypic analyses as a promising approach for developing diagnostics applicable to future investigations of cryptic and emerging pathogens.

3.
Microbiol Spectr ; 10(6): e0306922, 2022 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-36318036

RESUMO

Fungal diseases affect millions of humans annually, yet fungal pathogens remain understudied. The mold Aspergillus flavus can cause both aspergillosis and fungal keratitis infections, but closely related species are not considered clinically relevant. To study the evolution of A. flavus pathogenicity, we examined genomic and phenotypic traits of two strains of A. flavus and three closely related species, Aspergillus arachidicola (two strains), Aspergillus parasiticus (two strains), and Aspergillus nomiae (one strain). We identified >3,000 orthologous proteins unique to A. flavus, including seven biosynthetic gene clusters present in A. flavus strains and absent in the three nonpathogens. We characterized secondary metabolite production for all seven strains under two clinically relevant conditions, temperature and salt concentration. Temperature impacted metabolite production in all species, whereas salinity did not affect production of any species. Strains of the same species produced different metabolites. Growth under stress conditions revealed additional heterogeneity within species. Using the invertebrate fungal disease model Galleria mellonella, we found virulence of strains of the same species varied widely; A. flavus strains were not more virulent than strains of the nonpathogens. In a murine model of fungal keratitis, we observed significantly lower disease severity and corneal thickness for A. arachidicola compared to other species at 48 h postinfection, but not at 72 h. Our work identifies variations in key phenotypic, chemical, and genomic attributes between A. flavus and its nonpathogenic relatives and reveals extensive strain heterogeneity in virulence that does not correspond to the currently established clinical relevance of these species. IMPORTANCE Aspergillus flavus is a filamentous fungus that causes opportunistic human infections, such as aspergillosis and fungal keratitis, but its close relatives are considered nonpathogenic. To begin understanding how this difference in pathogenicity evolved, we characterized variation in infection-relevant genomic, chemical, and phenotypic traits between strains of A. flavus and its relatives. We found extensive variation (or strain heterogeneity) within the pathogenic A. flavus as well as within its close relatives, suggesting that strain-level differences may play a major role in the ability of these fungi to cause disease. Surprisingly, we also found that the virulence of strains from species not considered to be pathogens was similar to that of A. flavus in both invertebrate and murine models of disease. These results contrast with previous studies on Aspergillus fumigatus, another major pathogen in the genus, for which significant differences in infection-relevant chemical and phenotypic traits are observed between closely related pathogenic and nonpathogenic species.


Assuntos
Aspergilose , Ceratite , Humanos , Animais , Camundongos , Aspergillus flavus/metabolismo , Aspergilose/microbiologia , Aspergillus fumigatus/genética , Genômica
4.
J Agric Food Chem ; 70(31): 9790-9801, 2022 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-35881882

RESUMO

Managed honey bee colonies used for crop pollination are fed artificial diets to offset nutritional deficiencies related to land-use intensification and climate change. In this study, we formulated novel microalgae diets using Chlorella vulgaris and Arthrospira platensis (spirulina) biomass and fed them to young adult honey bee workers. Diet-induced changes in bee metabolite profiles were studied relative to a natural pollen diet using liquid chromatography-mass spectrometry (LC-MS) and gas chromatography-mass spectrometry (GC-MS) metabolomics. Untargeted analyses of pollen- and microalgae-fed bees revealed significant overlap, with 248 shared features determined by LC-MS and 87 shared features determined by GC-MS. Further metabolomic commonalities were evident upon subtraction of unique diet features. Twenty-five identified metabolites were influenced by diet, which included complex lipids, essential fatty acids, vitamins, and phytochemicals. The metabolomics results are useful to understand mechanisms underlying favorable growth performance as well as increased antioxidant and heat shock protein gene expression in bees fed the microalgae diets. We conclude that the tested microalgae have potential as sustainable feed additives and as a source of bee health-modulating natural products. Metabolomics-guided diet development could eventually help tailor feed interventions to achieve precision nutrition in honey bees and other livestock animals.


Assuntos
Chlorella vulgaris , Microalgas , Animais , Abelhas , Dieta , Metabolômica , Pólen
5.
Phytochemistry ; 199: 113200, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35421431

RESUMO

Studies on an organic extract of a marine fungus, Periconia sp. (strain G1144), led to the isolation of three halogenated cyclopentenes along with the known and recently reported rhytidhyester D; a series of spectrometric and spectroscopic techniques were used to elucidate these structures. Interestingly, two of these compounds represent tri-halogenated cyclopentene derivatives, which have been observed only rarely from Nature. The relative and absolute configurations of the compounds were established via mass spectrometry (MS), nuclear magnetic resonance (NMR) spectroscopy, Mosher's esters method, optical rotation and GIAO NMR calculations, including correlation coefficient calculations and the use of both DP4+ and dJ DP4 analyses. Several of the isolated compounds were tested for activity in anti-parasitic, antimicrobial, quorum sensing inhibition, and cytotoxicity assays and were shown to be inactive.


Assuntos
Anti-Infecciosos , Ascomicetos , Antibacterianos/farmacologia , Ascomicetos/química , Ciclopentanos/farmacologia , Espectroscopia de Ressonância Magnética , Estrutura Molecular
6.
Nat Prod Rep ; 39(8): 1557-1573, 2022 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-35137758

RESUMO

Covering: 2002 to 2020In their natural environment, fungi must compete for resources. It has been hypothesized that this competition likely induces the biosynthesis of secondary metabolites for defence. In a quest to discover new chemical diversity from fungal cultures, a growing trend has been to recapitulate this competitive environment in the laboratory, essentially growing fungi in co-culture. This review covers fungal-fungal co-culture studies beginning with the first literature report in 2002. Since then, there has been a growing number of new secondary metabolites reported as a result of fungal co-culture studies. Specifically, this review discusses and provides insights into (1) rationale for pairing fungal strains, (2) ways to grow fungi for co-culture, (3) different approaches to screening fungal co-cultures for chemical diversity, (4) determining the secondary metabolite-producing strain, and (5) final thoughts regarding the fungal-fungal co-culture approach. Our goal is to provide a set of practical strategies for fungal co-culture studies to generate unique chemical diversity that the natural products research community can utilize.


Assuntos
Produtos Biológicos , Fungos , Produtos Biológicos/metabolismo , Técnicas de Cocultura , Fungos/metabolismo
7.
PLoS Genet ; 18(1): e1009965, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-35041649

RESUMO

Aspergillus fumigatus causes a range of human and animal diseases collectively known as aspergillosis. A. fumigatus possesses and expresses a range of genetic determinants of virulence, which facilitate colonisation and disease progression, including the secretion of mycotoxins. Gliotoxin (GT) is the best studied A. fumigatus mycotoxin with a wide range of known toxic effects that impair human immune cell function. GT is also highly toxic to A. fumigatus and this fungus has evolved self-protection mechanisms that include (i) the GT efflux pump GliA, (ii) the GT neutralising enzyme GliT, and (iii) the negative regulation of GT biosynthesis by the bis-thiomethyltransferase GtmA. The transcription factor (TF) RglT is the main regulator of GliT and this GT protection mechanism also occurs in the non-GT producing fungus A. nidulans. However, the A. nidulans genome does not encode GtmA and GliA. This work aimed at analysing the transcriptional response to exogenous GT in A. fumigatus and A. nidulans, two distantly related Aspergillus species, and to identify additional components required for GT protection. RNA-sequencing shows a highly different transcriptional response to exogenous GT with the RglT-dependent regulon also significantly differing between A. fumigatus and A. nidulans. However, we were able to observe homologs whose expression pattern was similar in both species (43 RglT-independent and 11 RglT-dependent). Based on this approach, we identified a novel RglT-dependent methyltranferase, MtrA, involved in GT protection. Taking into consideration the occurrence of RglT-independent modulated genes, we screened an A. fumigatus deletion library of 484 transcription factors (TFs) for sensitivity to GT and identified 15 TFs important for GT self-protection. Of these, the TF KojR, which is essential for kojic acid biosynthesis in Aspergillus oryzae, was also essential for virulence and GT biosynthesis in A. fumigatus, and for GT protection in A. fumigatus, A. nidulans, and A. oryzae. KojR regulates rglT, gliT, gliJ expression and sulfur metabolism in Aspergillus species. Together, this study identified conserved components required for GT protection in Aspergillus species.


Assuntos
Aspergillus/crescimento & desenvolvimento , Gliotoxina/farmacologia , Metiltransferases/genética , Fatores de Transcrição/genética , Aspergillus/efeitos dos fármacos , Aspergillus/genética , Aspergillus fumigatus/efeitos dos fármacos , Aspergillus fumigatus/genética , Aspergillus fumigatus/crescimento & desenvolvimento , Aspergillus nidulans/efeitos dos fármacos , Aspergillus nidulans/genética , Aspergillus nidulans/crescimento & desenvolvimento , Aspergillus oryzae/efeitos dos fármacos , Aspergillus oryzae/genética , Aspergillus oryzae/crescimento & desenvolvimento , Proteínas Fúngicas/genética , Perfilação da Expressão Gênica , Regulação Fúngica da Expressão Gênica , Gliotoxina/biossíntese , RNA-Seq
8.
Microbiol Spectr ; 9(1): e0001021, 2021 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-34106569

RESUMO

The ongoing global pandemic caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is responsible for coronavirus disease 2019 (COVID-19), first described in Wuhan, China. A subset of COVID-19 patients has been reported to have acquired secondary infections by microbial pathogens, such as opportunistic fungal pathogens from the genus Aspergillus. To gain insight into COVID-19-associated pulmonary aspergillosis (CAPA), we analyzed the genomes and characterized the phenotypic profiles of four CAPA isolates of Aspergillus fumigatus obtained from patients treated in the area of North Rhine-Westphalia, Germany. By examining the mutational spectrum of single nucleotide polymorphisms, insertion-deletion polymorphisms, and copy number variants among 206 genes known to modulate A. fumigatus virulence, we found that CAPA isolate genomes do not exhibit significant differences from the genome of the Af293 reference strain. By examining a number of factors, including virulence in an invertebrate moth model, growth in the presence of osmotic, cell wall, and oxidative stressors, secondary metabolite biosynthesis, and the MIC of antifungal drugs, we found that CAPA isolates were generally, but not always, similar to A. fumigatus reference strains Af293 and CEA17. Notably, CAPA isolate D had more putative loss-of-function mutations in genes known to increase virulence when deleted. Moreover, CAPA isolate D was significantly more virulent than the other three CAPA isolates and the A. fumigatus reference strains Af293 and CEA17, but similarly virulent to two other clinical strains of A. fumigatus. These findings expand our understanding of the genomic and phenotypic characteristics of isolates that cause CAPA. IMPORTANCE The global pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the etiological agent of coronavirus disease 2019 (COVID-19), has already killed millions of people. COVID-19 patient outcome can be further complicated by secondary infections, such as COVID-19-associated pulmonary aspergillosis (CAPA). CAPA is caused by Aspergillus fungal pathogens, but there is little information about the genomic and phenotypic characteristics of CAPA isolates. We conducted genome sequencing and extensive phenotyping of four CAPA isolates of Aspergillus fumigatus from Germany. We found that CAPA isolates were often, but not always, similar to other reference strains of A. fumigatus across 206 genetic determinants of infection-relevant phenotypes, including virulence. For example, CAPA isolate D was more virulent than other CAPA isolates and reference strains in an invertebrate model of fungal disease, but similarly virulent to two other clinical strains. These results expand our understanding of COVID-19-associated pulmonary aspergillosis.


Assuntos
Aspergillus fumigatus/genética , COVID-19/complicações , Genômica , Fenótipo , Aspergilose Pulmonar/complicações , Idoso , Antifúngicos , Aspergillus , Aspergillus fumigatus/classificação , Aspergillus fumigatus/efeitos dos fármacos , Aspergillus fumigatus/isolamento & purificação , Feminino , Humanos , Masculino , Metabolômica , Testes de Sensibilidade Microbiana , Pessoa de Meia-Idade , Mutação , Polimorfismo de Nucleotídeo Único , SARS-CoV-2 , Metabolismo Secundário/genética , Virulência/genética
9.
J Nat Prod ; 84(4): 1254-1260, 2021 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-33764773

RESUMO

Four new bislactones, dihydroacremonol (1), clonostachyone (2), acremodiol B (3), and acremodiol C (4), along with one known compound, hymeglusin (5), were isolated from cultures of two fungal strains (MSX59876 and MSX59260). Both strains were identified based on phylogenetic analysis of molecular data as Clonostachys spp.; yet, they biosynthesized a suite of related, but different, secondary metabolites. Given the challenges associated with elucidating the structures and configurations of bislactones, GIAO NMR calculations were tested as a complement to traditional NMR and HRESIMS experiments. Fortuitously, the enantiomer of the new natural product (4) was known as a synthetic compound, and the predicted configuration from GIAO NMR calculations (i.e., for the relative configuration) and optical rotation calculations (i.e., for the absolute configuration) matched those of the synthesis product. These results engendered confidence in using similar procedures, particularly the mixture of GIAO NMR shift calculations coupled with an orthogonal technique, to predict the configuration of 1-3; however, there were important limitations, which are discussed for each of these. The metabolites displayed antimicrobial activities, with compounds 1 and 4 being the most potent against Staphylococcus aureus with MICs of 1 and 4 µg/mL, respectively.


Assuntos
Antibacterianos/química , Fungos/química , Lactonas/química , Produtos Biológicos/química , Espectroscopia de Ressonância Magnética , Estrutura Molecular , Filogenia , Estereoisomerismo
10.
J Pharm Biomed Anal ; 197: 113965, 2021 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-33640687

RESUMO

Natural products have been a primary source of medicines throughout the history of human existence. It is estimated that close to 70 % of small molecule pharmaceuticals on the market are derived from natural products. With increasing antibiotic resistance, natural products remain an important source for the discovery of novel antimicrobial compounds. The plant rosemary (Rosmarinus officinalis), has been widely and commonly used as a food preservative due to its antimicrobial potential. To evaluate the antimicrobial profile of this plant, we used bioassay-guided fractionation and bioinformatics approaches. Through bioassay-guided fractionation, we tested in vitro activities of a R. officinalis extract and fractions thereof, as well as pure compounds micromeric acid (1), oleanolic acid (2), and ursolic acid (3) against methicillin-resistant Staphylococcus aureus (MRSA). Compounds 1 and 3 showed complete inhibition of MRSA (with MIC values of 32 µg/mL and 8 µg/mL, respectively) while compound 2 displayed only partial inhibition (MIC > 64 µg/mL). In addition, we utilized orthogonal partial least square-discriminant analysis (OPLS-DA) and selectivity ratio (SR) analysis to correlate the isolated compounds 1-3 with the observed antimicrobial activity, as well as to identify antimicrobials present in trace quantities. For mass spectrometry (MS) data collected in the negative ionization mode, compound 1 was the most positively correlated with activity, while for MS data collected in the positive ion mode, compounds 2-3 had the highest positive correlation. Using the bioinformatics approaches, we highlighted additional antimicrobials associated with the antimicrobial activity of R. officinalis, including genkwanin (4), rosmadial (5a) and/or 16-hydroxyrosmadial (5b), rosmanol (6), and hesperetin (7). Compounds 1-3 resulting from the bioassay-guided fractionation were identified by MS-MS fragmentation patterns and 1H NMR spectra. Among the compounds highlighted by the biochemical analysis, compound 6 was identified by comparison with its commercial standard by employed ultra-performance liquid chromatography-high resolution mass spectrometry (UHPLC-HRMS), while 4, 5a-b and 7 were putatively identified based on MS data and in comparison with the literature. This is the first reported antimicrobial activity of micromeric acid (1) against MRSA.


Assuntos
Anti-Infecciosos , Staphylococcus aureus Resistente à Meticilina , Rosmarinus , Antibacterianos/farmacologia , Anti-Infecciosos/farmacologia , Bioensaio , Biologia Computacional , Humanos , Testes de Sensibilidade Microbiana , Extratos Vegetais/farmacologia
11.
bioRxiv ; 2020 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-33173866

RESUMO

The ongoing global pandemic caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is responsible for the coronavirus disease 2019 (COVID-19) first described from Wuhan, China. A subset of COVID-19 patients has been reported to have acquired secondary infections by microbial pathogens, such as fungal opportunistic pathogens from the genus Aspergillus . To gain insight into COVID-19 associated pulmonary aspergillosis (CAPA), we analyzed the genomes and characterized the phenotypic profiles of four CAPA isolates of Aspergillus fumigatus obtained from patients treated in the area of North Rhine-Westphalia, Germany. By examining the mutational spectrum of single nucleotide polymorphisms, insertion-deletion polymorphisms, and copy number variants among 206 genes known to modulate A. fumigatus virulence, we found that CAPA isolate genomes do not exhibit major differences from the genome of the Af293 reference strain. By examining virulence in an invertebrate moth model, growth in the presence of osmotic, cell wall, and oxidative stressors, and the minimum inhibitory concentration of antifungal drugs, we found that CAPA isolates were generally, but not always, similar to A. fumigatus reference strains Af293 and CEA17. Notably, CAPA isolate D had more putative loss of function mutations in genes known to increase virulence when deleted (e.g., in the FLEA gene, which encodes a lectin recognized by macrophages). Moreover, CAPA isolate D was significantly more virulent than the other three CAPA isolates and the A. fumigatus reference strains tested. These findings expand our understanding of the genomic and phenotypic characteristics of isolates that cause CAPA.

12.
Phytochemistry ; 179: 112504, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32980713

RESUMO

Plants in the genus Euphorbia produce a wide variety of pharmacologically active diterpenoids with anticancer, multidrug resistance reversal, and antiviral properties. Some are the primary industrial source of ingenol mebutate, which is approved for treatment of the precancerous skin condition actinic keratosis. Similar to other high value phytochemicals, Euphorbia diterpenoids accumulate at low concentrations in planta and chemical synthesis produces similarly low yields. We established genetically transformed root cultures of Euphorbia lathryis as a strategy to gain greater access to diterpenoids from this genus. Transformed roots produced via stem explant infection with Agrobacterium rhizogenes strain 15834 recapitulated the metabolite profiles of field-grown plant roots and aerial tissues. Several putative diterpenoids were present in transformed roots, including ingenol and closely related structures, indicating that root cultures are a promising approach to Euphorbia-specific diterpenoid production. Treatment with methyl jasmonate led to a significant, albeit transient increase in mRNA levels of early diterpenoid biosynthetic enzymes (farnesyl pyrophosphate synthase, geranylgeranyl pyrophosphate synthase, and casbene synthase), suggesting that elicitation could prove useful in future pathway characterization and metabolic engineering efforts. We also show the potential of transformed E. lathyris root cultures for natural product drug discovery applications by measuring their cytotoxic activities using a panel of human carcinoma cell lines derived from prostate, cervix, breast, and lung.


Assuntos
Euphorbia , Diterpenos/farmacologia , Humanos , Raízes de Plantas
13.
Genetics ; 216(2): 481-497, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32817009

RESUMO

Aspergillus fumigatus is a major human pathogen. In contrast, Aspergillus fischeri and the recently described Aspergillus oerlinghausenensis, the two species most closely related to A. fumigatus, are not known to be pathogenic. Some of the genetic determinants of virulence (or "cards of virulence") that A. fumigatus possesses are secondary metabolites that impair the host immune system, protect from host immune cell attacks, or acquire key nutrients. To examine whether secondary metabolism-associated cards of virulence vary between these species, we conducted extensive genomic and secondary metabolite profiling analyses of multiple A. fumigatus, one A. oerlinghausenensis, and multiple A. fischeri strains. We identified two cards of virulence (gliotoxin and fumitremorgin) shared by all three species and three cards of virulence (trypacidin, pseurotin, and fumagillin) that are variable. For example, we found that all species and strains examined biosynthesized gliotoxin, which is known to contribute to virulence, consistent with the conservation of the gliotoxin biosynthetic gene cluster (BGC) across genomes. For other secondary metabolites, such as fumitremorgin, a modulator of host biology, we found that all species produced the metabolite but that there was strain heterogeneity in its production within species. Finally, species differed in their biosynthesis of fumagillin and pseurotin, both contributors to host tissue damage during invasive aspergillosis. A. fumigatus biosynthesized fumagillin and pseurotin, while A. oerlinghausenensis biosynthesized fumagillin and A. fischeri biosynthesized neither. These biochemical differences were reflected in sequence divergence of the intertwined fumagillin/pseurotin BGCs across genomes. These results delineate the similarities and differences in secondary metabolism-associated cards of virulence between a major fungal pathogen and its nonpathogenic closest relatives, shedding light onto the genetic and phenotypic changes associated with the evolution of fungal pathogenicity.


Assuntos
Aspergillus/genética , Genes Fúngicos , Variação Genética , Micotoxinas/genética , Metabolismo Secundário , Aspergillus/classificação , Aspergillus/metabolismo , Aspergillus/patogenicidade , Família Multigênica , Micotoxinas/biossíntese , Filogenia , Virulência
14.
Curr Biol ; 30(13): 2495-2507.e7, 2020 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-32502407

RESUMO

Interspecific hybridization substantially alters genotypes and phenotypes and can give rise to new lineages. Hybrid isolates that differ from their parental species in infection-relevant traits have been observed in several human-pathogenic yeasts and plant-pathogenic filamentous fungi but have yet to be found in human-pathogenic filamentous fungi. We discovered 6 clinical isolates from patients with aspergillosis originally identified as Aspergillus nidulans (section Nidulantes) that are actually allodiploid hybrids formed by the fusion of Aspergillus spinulosporus with an unknown close relative of Aspergillus quadrilineatus, both in section Nidulantes. Evolutionary genomic analyses revealed that these isolates belong to Aspergillus latus, an allodiploid hybrid species. Characterization of diverse infection-relevant traits further showed that A. latus hybrid isolates are genomically and phenotypically heterogeneous but also differ from A. nidulans, A. spinulosporus, and A. quadrilineatus. These results suggest that allodiploid hybridization contributes to the genomic and phenotypic diversity of filamentous fungal pathogens of humans.


Assuntos
Aspergillus/genética , Genoma Fúngico , Hibridização Genética , Aspergillus/isolamento & purificação , Diploide , Genômica
15.
Org Lett ; 22(5): 1878-1882, 2020 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-32096649

RESUMO

Wheldone (1) was isolated and elucidated from a coculture of Aspergillus fischeri (NRRL 181) and Xylaria flabelliformis (G536), where secondary metabolite biosynthesis was stimulated by antagonism between these fungi. First observed via in situ analysis between these competing fungal cultures, the conditions were scaled to reproducibly generate 1, whose novel structure was elucidated by one- and two-dimensional NMR and mass spectrometry. Compound 1 displayed cytotoxic activity against breast, ovarian, and melanoma cancer cell lines.


Assuntos
Antineoplásicos/química , Ascomicetos/química , Aspergillus/química , Xylariales/química , Antineoplásicos/metabolismo , Técnicas de Cocultura , Espectrometria de Massas , Estrutura Molecular , Metabolismo Secundário , Xylariales/metabolismo
16.
mBio ; 11(1)2020 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-32047138

RESUMO

Aspergillus fumigatus is a major opportunistic human pathogen. Multiple traits contribute to A. fumigatus pathogenicity, including its ability to produce specific secondary metabolites, such as gliotoxin. Gliotoxin is known to inhibit the host immune response, and genetic mutants that inactivate gliotoxin biosynthesis (or secondary metabolism in general) attenuate A. fumigatus virulence. The genome of Aspergillus fischeri, a very close nonpathogenic relative of A. fumigatus, contains a biosynthetic gene cluster that is homologous to the A. fumigatus gliotoxin cluster. However, A. fischeri is not known to produce gliotoxin. To gain further insight into the similarities and differences between the major pathogen A. fumigatus and the nonpathogen A. fischeri, we examined whether A. fischeri strain NRRL 181 biosynthesizes gliotoxin and whether the production of secondary metabolites influences the virulence profile of A. fischeri We found that A. fischeri biosynthesizes gliotoxin under the same conditions as A. fumigatus However, whereas loss of laeA, a master regulator of secondary metabolite production (including gliotoxin biosynthesis), has previously been shown to reduce A. fumigatus virulence, we found that laeA loss (and loss of secondary metabolite production) in A. fischeri does not influence its virulence. These results suggest that LaeA-regulated secondary metabolites are virulence factors in the genomic and phenotypic background of the major pathogen A. fumigatus but are much less important in the background of the nonpathogen A. fischeri Understanding the observed spectrum of pathogenicity across closely related pathogenic and nonpathogenic Aspergillus species will require detailed characterization of their biological, chemical, and genomic similarities and differences.IMPORTANCEAspergillus fumigatus is a major opportunistic fungal pathogen of humans, but most of its close relatives are nonpathogenic. Why is that so? This important, yet largely unanswered, question can be addressed by examining how A. fumigatus and its close nonpathogenic relatives are similar or different with respect to virulence-associated traits. We investigated whether Aspergillus fischeri, a nonpathogenic close relative of A. fumigatus, can produce gliotoxin, a mycotoxin known to contribute to A. fumigatus virulence. We discovered that the nonpathogenic A. fischeri produces gliotoxin under the same conditions as those of the major pathogen A. fumigatus However, we also discovered that, in contrast to what has previously been observed in A. fumigatus, the loss of secondary metabolite production in A. fischeri does not alter its virulence. Our results are consistent with the "cards of virulence" model of opportunistic fungal disease, in which the ability to cause disease stems from the combination ("hand") of virulence factors ("cards") but not from individual factors per se.


Assuntos
Aspergillus fumigatus/metabolismo , Aspergillus fumigatus/patogenicidade , Aspergillus/metabolismo , Proteínas Fúngicas/biossíntese , Gliotoxina/biossíntese , Metabolismo Secundário/genética , Animais , Aspergilose/microbiologia , Aspergillus/genética , Aspergillus fumigatus/genética , Proteínas Fúngicas/genética , Regulação Fúngica da Expressão Gênica , Genômica , Mariposas/microbiologia , Família Multigênica , Virulência/genética , Fatores de Virulência/biossíntese , Fatores de Virulência/genética
17.
J Nat Prod ; 82(12): 3421-3431, 2019 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-31823607

RESUMO

Most often, the structures of secondary metabolites are solved using a suite of NMR techniques. However, there are times when it can be challenging to position double bonds, particularly those that are fully substituted or when there are multiple double bonds in similar chemical environments. Ozone-induced dissociation mass spectrometry (OzID-MS) serves as an orthogonal structure elucidation tool, using predictable fragmentation patterns that are generated after ozonolysis across a carbon-carbon double bond. This technique is finding growing use in the lipidomics community, suggestive of its potential value for secondary metabolites. This methodology was evaluated by confirming the double-bond positions in five fungal secondary metabolites, specifically, ent-sartorypyrone E (1), sartorypyrone A (2), sorbicillin (3), trichodermic acid A (4), and AA03390 (5). This demonstrated its potential with a variety of chemotypes, ranging from polyketides to terpenoids and including those in both conjugated and nonconjugated polyenes. In addition, the potential of using this methodology in the context of a mixture was piloted by studying Aspergillus fischeri, first examining a traditional extract and then sampling a live fungal culture in situ. While the intensity of signals varied from pure compound to extract to in situ, the utility of the technique was preserved.


Assuntos
Ozônio/química , Espectrometria de Massas por Ionização por Electrospray/métodos , Espectroscopia de Ressonância Magnética/métodos , Estrutura Molecular
18.
Microbiol Resour Announc ; 8(38)2019 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-31537670

RESUMO

The draft genome of the ascomycete fungus Xylaria flabelliformis (previously known as Xylaria cubensis) was sequenced using Illumina paired-end technology. The assembled genome is 41.2 Mb long and contains 11,404 genes. This genome will contribute to our understanding of X. flabelliformis secondary metabolism and the organism's ability to live as a decomposer as well as an endosymbiont.

19.
Nat Prod Rep ; 36(7): 944-959, 2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-31112181

RESUMO

Covering: up to 2019The chemistry of nature can be beautiful, inspiring, beneficial and poisonous, depending on perspective. Since the isolation of the first secondary metabolites roughly two centuries ago, much of the chemical research on natural products has been both reductionist and static. Typically, compounds were isolated and characterized from the extract of an entire organism from a single time point. While there could be subtexts to that approach, the general premise has been to determine the chemistry with very little in the way of tools to differentiate spatial and/or temporal changes in secondary metabolite profiles. However, the past decade has seen exponential advances in our ability to observe, measure, and visualize the chemistry of nature in situ. Many of those techniques have been reviewed in this journal, and most are tapping into the power of mass spectrometry to analyze a plethora of sample types. In nearly all of the other techniques used to study chemistry in situ, the element of chromatography has been eliminated, instead using various ionization sources to coax ions of the secondary metabolites directly into the mass spectrometer as a mixture. Much of that science has been driven by the great advances in ambient ionization techniques used with a suite of mass spectrometry platforms, including the alphabet soup from DESI to LAESI to MALDI. This review discusses the one in situ analysis technique that incorporates chromatography, being the droplet-liquid microjunction-surface sampling probe, which is more easily termed "droplet probe". In addition to comparing and contrasting the droplet probe with other techniques, we provide perspective on why scientists, particularly those steeped in natural products chemistry training, may want to include chromatography in in situ analyses. Moreover, we provide justification for droplet sampling, especially for samples with delicate and/or non-uniform topographies. Furthermore, while the droplet probe has been used the most in the analysis of fungal cultures, we digest a variety of other applications, ranging from cyanobacteria, to plant parts, and even delicate documents, such as herbarium specimens.


Assuntos
Produtos Biológicos/química , Cromatografia/métodos , Técnicas Analíticas Microfluídicas , Produtos Biológicos/isolamento & purificação , Técnicas de Cocultura , Cianobactérias/química , Fungos/química , Espectrometria de Massas/métodos , Técnicas Analíticas Microfluídicas/métodos , Plantas/química
20.
Front Microbiol ; 10: 285, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30837981

RESUMO

Fungi grow in competitive environments, and to cope, they have evolved strategies, such as the ability to produce a wide range of secondary metabolites. This begs two related questions. First, how do secondary metabolites influence fungal ecology and interspecific interactions? Second, can these interspecific interactions provide a way to "see" how fungi respond, chemically, within a competitive environment? To evaluate these, and to gain insight into the secondary metabolic arsenal fungi possess, we co-cultured Aspergillus fischeri, a genetically tractable fungus that produces a suite of mycotoxins, with Xylaria cubensis, a fungus that produces the fungistatic compound and FDA-approved drug, griseofulvin. To monitor and characterize fungal chemistry in situ, we used the droplet-liquid microjunction-surface sampling probe (droplet probe). The droplet probe makes a microextraction at defined locations on the surface of the co-culture, followed by analysis of the secondary metabolite profile via liquid chromatography-mass spectrometry. Using this, we mapped and compared the spatial profiles of secondary metabolites from both fungi in monoculture versus co-culture. X. cubensis predominantly biosynthesized griseofulvin and dechlorogriseofulvin in monoculture. In contrast, under co-culture conditions a deadlock was formed between the two fungi, and X. cubensis biosynthesized the same two secondary metabolites, along with dechloro-5'-hydroxygriseofulvin and 5'-hydroxygriseofulvin, all of which have fungistatic properties, as well as mycotoxins like cytochalasin D and cytochalasin C. In contrast, in co-culture, A. fischeri increased the production of the mycotoxins fumitremorgin B and verruculogen, but otherwise remained unchanged relative to its monoculture. To evaluate that secondary metabolites play an important role in defense and territory establishment, we co-cultured A. fischeri lacking the master regulator of secondary metabolism laeA with X. cubensis. We found that the reduced secondary metabolite biosynthesis of the ΔlaeA strain of A. fischeri eliminated the organism's ability to compete in co-culture and led to its displacement by X. cubensis. These results demonstrate the potential of in situ chemical analysis and deletion mutant approaches for shedding light on the ecological roles of secondary metabolites and how they influence fungal ecological strategies; co-culturing may also stimulate the biosynthesis of secondary metabolites that are not produced in monoculture in the laboratory.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA