Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Front Big Data ; 6: 1042783, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36777449

RESUMO

Background: Cyber defense decision-making during cyber threat situations is based on human-to-human communication aiming to establish a shared cyber situational awareness. Previous studies suggested that communication inefficiencies were among the biggest problems facing security operation center teams. There is a need for tools that allow for more efficient communication of cyber threat information between individuals both in education and during cyber threat situations. Methods: In the present study, we compared how the visual representation of network topology and traffic in 3D mixed reality vs. 2D affected team performance in a sample of cyber cadets (N = 22) cooperating in dyads. Performance outcomes included network topology recognition, cyber situational awareness, confidence in judgements, experienced communication demands, observed verbal communication, and forced choice decision-making. The study utilized network data from the NATO CCDCOE 2022 Locked Shields cyber defense exercise. Results: We found that participants using the 3D mixed reality visualization had better cyber situational awareness than participants in the 2D group. The 3D mixed reality group was generally more confident in their judgments except when performing worse than the 2D group on the topology recognition task (which favored the 2D condition). Participants in the 3D mixed reality group experienced less communication demands, and performed more verbal communication aimed at establishing a shared mental model and less communications discussing task resolution. Better communication was associated with better cyber situational awareness. There were no differences in decision-making between the groups. This could be due to cohort effects such as formal training or the modest sample size. Conclusion: This is the first study comparing the effect of 3D mixed reality and 2D visualizations of network topology on dyadic cyber team communication and cyber situational awareness. Using 3D mixed reality visualizations resulted in better cyber situational awareness and team communication. The experiment should be repeated in a larger and more diverse sample to determine its potential effect on decision-making.

2.
Front Hum Neurosci ; 16: 1092056, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36684840

RESUMO

Background: Cyber operations unfold at superhuman speeds where cyber defense decisions are based on human-to-human communication aiming to achieve a shared cyber situational awareness. The recently proposed Orient, Locate, Bridge (OLB) model suggests a three-phase metacognitive approach for successful communication of cyber situational awareness for good cyber defense decision-making. Successful OLB execution implies applying cognitive control to coordinate self-referential and externally directed cognitive processes. In the brain, this is dependent on the frontoparietal control network and its connectivity to the default mode network. Emotional reactions may increase default mode network activity and reduce attention allocation to analytical processes resulting in sub-optimal decision-making. Vagal tone is an indicator of activity in the dorsolateral prefrontal node of the frontoparietal control network and is associated with functional connectivity between the frontoparietal control network and the default mode network. Aim: The aim of the present study was to assess whether indicators of neural activity relevant to the processes outlined by the OLB model were related to outcomes hypothesized by the model. Methods: Cyber cadets (N = 36) enrolled in a 3-day cyber engineering exercise organized by the Norwegian Defense Cyber Academy participated in the study. Differences in prospective metacognitive judgments of cyber situational awareness, communication demands, and mood were compared between cyber cadets with high and low vagal tone. Vagal tone was measured at rest prior to the exercise. Affective states, communication demands, cyber situational awareness, and metacognitive accuracy were measured on each day of the exercise. Results: We found that cyber cadets with higher vagal tone had better metacognitive judgments of cyber situational awareness, imposed fewer communication demands on their teams, and had more neutral moods compared to cyber cadets with lower vagal tone. Conclusion: These findings provide neuroergonomic support for the OLB model and suggest that it may be useful in education and training. Future studies should assess the effect of OLB-ing as an intervention on communication and performance.

3.
Behav Sci (Basel) ; 11(11)2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34821613

RESUMO

Cybersecurity (CS) is a contemporary field for research and applied study of a range of aspects from across multiple disciplines. A cybersecurity expert has an in-depth knowledge of technology but is often also recognized for the ability to view technology in a non-standard way. This paper explores how CS specialists are both a combination of professional computing-based skills and genetically encoded traits. Almost every human behavioral trait is a result of many genome variants in action altogether with environmental factors. The review focuses on contextualizing the behavior genetics aspects in the application of cybersecurity. It reconsiders methods that help to identify aspects of human behavior from the genetic information. And stress is an illustrative factor to start the discussion within the community on what methodology should be used in an ethical way to approach those questions. CS positions are considered stressful due to the complexity of the domain and the social impact it can have in cases of failure. An individual risk profile could be created combining known genome variants linked to a trait of particular behavior using a special biostatistical approach such as a polygenic score. These revised advancements bring challenging possibilities in the applications of human behavior genetics and CS.

4.
mBio ; 11(1)2020 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-32071276

RESUMO

Fungi are versatile organisms which thrive in hostile environments, including the International Space Station (ISS). Several isolates of the human pathogen Aspergillus fumigatus have been found contaminating the ISS, an environment with increased exposure to UV radiation. Secondary metabolites (SMs) in spores, such as melanins, have been shown to protect spores from UV radiation in other fungi. To test the hypothesis that melanin and other known spore SMs provide UV protection to A. fumigatus isolates, we subjected SM spore mutants to UV-C radiation. We found that 1,8-dihydroxynaphthalene (DHN)-melanin mutants of two clinical A. fumigatus strains (Af293 and CEA17) but not an ISS-isolated strain (IF1SW-F4) were more sensitive to UV-C than their respective wild-type (WT) strains. Because DHN-melanin has been shown to shield A. fumigatus from the host immune system, we examined all DHN mutants for virulence in the zebrafish model of invasive aspergillosis. Following recent studies highlighting the pathogenic variability of different A. fumigatus isolates, we found DHN-melanin to be a virulence factor in CEA17 and IF1SW-F4 but not Af293. Three additional spore metabolites were examined in Af293, where fumiquinazoline also showed UV-C-protective properties, but two other spore metabolites, monomethylsulochrin and fumigaclavine, provided no UV-C-protective properties. Virulence tests of these three SM spore mutants indicated a slight increase in virulence of the monomethylsulochrin deletion strain. Taken together, this work suggests differential roles of specific spore metabolites across Aspergillus isolates and by types of environmental stress.IMPORTANCE Fungal spores contain secondary metabolites that can protect them from a multitude of abiotic and biotic stresses. Conidia (asexual spores) of the human pathogen Aspergillus fumigatus synthesize several metabolites, including melanin, which has been reported to be important for virulence in this species and to be protective against UV radiation in other fungi. Here, we investigate the role of melanin in diverse isolates of A. fumigatus and find variability in its ability to protect spores from UV-C radiation or impact virulence in a zebrafish model of invasive aspergillosis in two clinical strains and one ISS strain. Further, we assess the role of other spore metabolites in a clinical strain of A. fumigatus and identify fumiquinazoline as an additional UV-C-protective molecule but not a virulence determinant. The results show differential roles of secondary metabolites in spore protection dependent on the environmental stress and strain of A. fumigatus As protection from elevated levels of radiation is of paramount importance for future human outer space explorations, the discovery of small molecules with radiation-protective potential may result in developing novel safety measures for astronauts.


Assuntos
Aspergillus fumigatus/metabolismo , Aspergillus fumigatus/efeitos da radiação , Metabolismo Secundário/fisiologia , Metabolismo Secundário/efeitos da radiação , Esporos Fúngicos/metabolismo , Esporos Fúngicos/efeitos da radiação , Raios Ultravioleta/efeitos adversos , Fatores de Virulência/efeitos da radiação , Animais , Aspergilose/microbiologia , Modelos Animais de Doenças , Proteínas Fúngicas/metabolismo , Melaninas/genética , Mutação , Naftóis , Protetores contra Radiação/farmacologia , Metabolismo Secundário/genética , Esporos Fúngicos/genética , Virulência/efeitos da radiação , Fatores de Virulência/metabolismo , Peixe-Zebra
5.
J Cell Sci ; 133(5)2019 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-31722976

RESUMO

Neutrophils are primary phagocytes of the innate immune system that generate reactive oxygen species (ROS) and mediate host defense. Deficient phagocyte NADPH oxidase (PHOX) function leads to chronic granulomatous disease (CGD) that is characterized by invasive infections, including those by the generally non-pathogenic fungus Aspergillus nidulans The role of neutrophil ROS in this specific host-pathogen interaction remains unclear. Here, we exploit the optical transparency of zebrafish to image the effects of neutrophil ROS on invasive fungal growth and neutrophil behavior in response to Aspergillus nidulans In a wild-type host, A. nidulans germinates rapidly and elicits a robust inflammatory response with efficient fungal clearance. PHOX-deficient larvae have increased susceptibility to invasive A. nidulans infection despite robust neutrophil infiltration. Expression of subunit p22phox (officially known as CYBA), specifically in neutrophils, does not affect fungal germination but instead limits the area of fungal growth and excessive neutrophil inflammation and is sufficient to restore host survival in p22phox-deficient larvae. These findings suggest that neutrophil ROS limits invasive fungal growth and has immunomodulatory activities that contribute to the specific susceptibility of PHOX-deficient hosts to invasive A. nidulans infection.


Assuntos
Aspergilose/imunologia , Aspergillus nidulans/crescimento & desenvolvimento , NADPH Oxidases/metabolismo , Neutrófilos/enzimologia , Animais , Aspergillus nidulans/patogenicidade , Doença Granulomatosa Crônica/enzimologia , Inflamação/enzimologia , Modelos Animais , NADPH Oxidases/deficiência , Espécies Reativas de Oxigênio/metabolismo , Peixe-Zebra
6.
Front Psychol ; 10: 875, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31068866

RESUMO

Reliance upon data networks to conduct military operations presents new challenges to the competence profiles of military personnel. Specifically the increased demand for the new category of military cyber personnel is a direct consequence of the utility of the cyber domain in contemporary military operations, both to support leadership processes and as a domain of operations on its own. The conflation of the cyber and physical domains empowers cyber operators to influence events beyond their immediate physical environment. Proper education and training of such personnel requires new insight into the competencies that are beyond cyber specific technical skills, to govern the complexity of operating in a cyber-physical hybrid environment. This pilot research contributes to the debate on military cyber personnel competencies by investigating how cyber defense operator's level of self-regulation can contribute to their performance in operations. We hypothesize that higher levels of self-regulation predicts higher levels of cognitive agility as measured by cognitive movement in The Hybrid Space conceptual framework. Displays of cognitive agility within The Hybrid Space have previously been linked to performance in defensive cyber operations. A positive association was therefore expected between levels of self-regulation and displays of cognitive agility. N = 23 cyber cadets from the Norwegian Defence Cyber Academy (NDCA) completed self-regulation questionnaires (SRQs) and self-reported their cognitive location in The Hybrid Space during a 4-day cyber defense exercise. Data showed that higher levels of self-regulation were associated with displays of cognitive agility. According to the regression models in use, self-regulation could explain 43.1% of the total cognitive movements in The Hybrid Space. Understanding factors that contribute to cyber operator performance are needed to improve education and training programs for military cyber personnel. Validating self-regulation as a contributing factor to cognitive agility is important as this can be a pathway to empirically underpin individual cyber operator performance.

7.
J Fungi (Basel) ; 4(4)2018 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-30551557

RESUMO

The zebrafish has become a widely accepted model host for studies of infectious disease, including fungal infections. The species is genetically tractable, and the larvae are transparent and amenable to prolonged in vivo imaging and small molecule screening. The aim of this review is to provide a thorough introduction into the published studies of fungal infection in the zebrafish and the specific ways in which this model has benefited the field. In doing so, we hope to provide potential new zebrafish researchers with a snapshot of the current toolbox and prior results, while illustrating how the model has been used well and where the unfulfilled potential of this model can be found.

8.
PLoS Pathog ; 14(8): e1007229, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30071103

RESUMO

In immunocompromised individuals, Aspergillus fumigatus causes invasive fungal disease that is often difficult to treat. Exactly how immune mechanisms control A. fumigatus in immunocompetent individuals remains unclear. Here, we use transparent zebrafish larvae to visualize and quantify neutrophil and macrophage behaviors in response to different A. fumigatus strains. We find that macrophages form dense clusters around spores, establishing a protective niche for fungal survival. Macrophages exert these protective effects by inhibiting fungal germination, thereby inhibiting subsequent neutrophil recruitment and neutrophil-mediated killing. Germination directly drives fungal clearance as faster-growing CEA10-derived strains are killed better in vivo than slower-growing Af293-derived strains. Additionally, a CEA10 pyrG-deficient strain with impaired germination is cleared less effectively by neutrophils. Host inflammatory activation through Myd88 is required for killing of a CEA10-derived strain but not sufficient for killing of an Af293-derived strain, further demonstrating the role of fungal-intrinsic differences in the ability of a host to clear an infection. Altogether, we describe a new role for macrophages in the persistence of A. fumigatus and highlight the ability of different A. fumigatus strains to adopt diverse modes of virulence.


Assuntos
Aspergillus fumigatus/imunologia , Aspergillus fumigatus/fisiologia , Citotoxicidade Imunológica , Macrófagos/fisiologia , Neutrófilos/fisiologia , Esporos Fúngicos/imunologia , Animais , Animais Geneticamente Modificados , Aspergilose/imunologia , Aspergilose/microbiologia , Aspergillus fumigatus/genética , Larva , Organismos Geneticamente Modificados , Fagocitose/imunologia , Esporos Fúngicos/genética , Peixe-Zebra/embriologia , Peixe-Zebra/crescimento & desenvolvimento , Peixe-Zebra/imunologia
9.
Front Psychol ; 9: 717, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29867680

RESUMO

Through analysis of empirical interview data this research undertakes to investigate the ways in which the growing phenomenon of cyberpower - defined as using cyberspace for advantage and influence - is impacting on institutional development in Norway. Exploring this governance challenge through the conceptual framework of complexity, difference and emergence opens space - political or otherwise - for discussion regarding why rapid developments arising from digitalization are transforming the way individuals, organizations, institutions and states behave, relate and make decisions. Cyberpower is creating an uncertain institutional landscape as a dependency vs. vulnerability paradox shapes values, rules and norms. Findings from this thematic analysis of qualitative data reflect this paradox, and suggest that organizations in Norway are in a survival-mode that is blocking collaboration. This occurs as national governance systems, human capacity and cyberpower effects lack synergy making for an uneasy arena where complexity, contestation and emerging challenges frame institutional development. To improve long-term prospects of governing cyberpower effects requires a cross-sectorial conflation of time and human resources. This means consciously taking steps to merge organizational and institutional boundaries through expressive innovative collaborations that foster a shared and holistic agenda. The emerging challenges cyberpower is presenting across multiple domains means further research is recommended to build a richer understanding of the term cyberpower from different perspectives. The investigation recommends investment in building the skills and capacities necessary for the co-creation of new models and strategies for managing the effects of cyberpower.

10.
Fungal Genet Biol ; 117: 1-10, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29753128

RESUMO

LaeA is a conserved global regulator of secondary metabolism and development in filamentous fungi. Examination of Aspergillus fumigatus transcriptome data of laeA deletion mutants have been fruitful in identifying genes and molecules contributing to the laeA mutant phenotype. One of the genes significantly down regulated in A. fumigatus ΔlaeA is metR, encoding a bZIP DNA binding protein required for sulfur and methionine metabolism in fungi. LaeA and MetR deletion mutants exhibit several similarities including down regulation of sulfur assimilation and methionine metabolism genes and ability to grow on the toxic sulfur analog, sodium selenate. However, unlike ΔmetR, ΔlaeA strains are able to grow on sulfur, sulfite, and cysteine. To examine if any parameter of the ΔlaeA phenotype is due to decreased metR expression, an over-expression allele (OE::metR) was placed in a ΔlaeA background. The OE::metR allele could not significantly restore expression of MetR regulated genes in ΔlaeA but did restore sensitivity to sodium selenate. In A. nidulans a second bZIP protein, MetZ, also regulates sulfur and methionine metabolism genes. However, addition of an OE::metZ construct to the A. fumigatus ΔlaeA OE::metR strain still was unable to rescue the ΔlaeA phenotype to wildtype with regards gliotoxin synthesis and virulence in a zebrafish aspergillosis model.


Assuntos
Aspergilose/genética , Aspergillus fumigatus/genética , Fatores de Transcrição de Zíper de Leucina Básica/genética , Proteínas Fúngicas/genética , Alelos , Animais , Aspergilose/microbiologia , Aspergillus fumigatus/patogenicidade , Proteínas de Ligação a DNA/genética , Modelos Animais de Doenças , Regulação Fúngica da Expressão Gênica , Gliotoxina/biossíntese , Gliotoxina/metabolismo , Metionina/genética , Metionina/metabolismo , Metabolismo Secundário/genética , Ácido Selênico , Deleção de Sequência , Fatores de Transcrição/genética , Transcriptoma/genética , Peixe-Zebra
11.
Psychol Res Behav Manag ; 11: 1-8, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29296103

RESUMO

BACKGROUND: Technical advancement in military cyber defense poses increased cognitive demands on cyber officers. In the cyber domain, the influence of emotion on decision-making is rarely investigated. The purpose of this study was to assess psychophysiological correlation with perseverative cognitions during emotionally intensive/stressful situations in cyber military personnel. In line with parallel research on clinical samples high on perseverative cognition, we expected a decreased interoceptive sensitivity in officers with high levels of perseverative cognition. METHOD: We investigated this association in a sample of 27 cyber officer cadets. RESULTS: Contrary to our hypothesis, there was no relationship between the factors. DISCUSSION: Cyber officers might display characteristics not otherwise found in general populations. The cyber domain may lead to a selection process that attracts different profiles of cognitive and emotional processing.

12.
mBio ; 8(5)2017 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-28874473

RESUMO

The study of aflatoxin in Aspergillus spp. has garnered the attention of many researchers due to aflatoxin's carcinogenic properties and frequency as a food and feed contaminant. Significant progress has been made by utilizing the model organism Aspergillus nidulans to characterize the regulation of sterigmatocystin (ST), the penultimate precursor of aflatoxin. A previous forward genetic screen identified 23 A. nidulans mutants involved in regulating ST production. Six mutants were characterized from this screen using classical mapping (five mutations in mcsA) and complementation with a cosmid library (one mutation in laeA). The remaining mutants were backcrossed and sequenced using Illumina and Ion Torrent sequencing platforms. All but one mutant contained one or more sequence variants in predicted open reading frames. Deletion of these genes resulted in identification of mutant alleles responsible for the loss of ST production in 12 of the 17 remaining mutants. Eight of these mutations were in genes already known to affect ST synthesis (laeA, mcsA, fluG, and stcA), while the remaining four mutations (in laeB, sntB, and hamI) were in previously uncharacterized genes not known to be involved in ST production. Deletion of laeB, sntB, and hamI in A. flavus results in loss of aflatoxin production, confirming that these regulators are conserved in the aflatoxigenic aspergilli. This report highlights the multifaceted regulatory mechanisms governing secondary metabolism in Aspergillus Additionally, these data contribute to the increasing number of studies showing that forward genetic screens of fungi coupled with whole-genome resequencing is a robust and cost-effective technique.IMPORTANCE In a postgenomic world, reverse genetic approaches have displaced their forward genetic counterparts. The techniques used in forward genetics to identify loci of interest were typically very cumbersome and time-consuming, relying on Mendelian traits in model organisms. The current work was pursued not only to identify alleles involved in regulation of secondary metabolism but also to demonstrate a return to forward genetics to track phenotypes and to discover genetic pathways that could not be predicted through a reverse genetics approach. While identification of mutant alleles from whole-genome sequencing has been done before, here we illustrate the possibility of coupling this strategy with a genetic screen to identify multiple alleles of interest. Sequencing of classically derived mutants revealed several uncharacterized genes, which represent novel pathways to regulate and control the biosynthesis of sterigmatocystin and of aflatoxin, a societally and medically important mycotoxin.


Assuntos
Aspergillus nidulans/genética , Aspergillus nidulans/metabolismo , Regulação Fúngica da Expressão Gênica , Metabolismo Secundário/genética , Cosmídeos/genética , DNA Fúngico/genética , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Genes Fúngicos , Teste de Complementação Genética , Genoma Fúngico , Sequenciamento de Nucleotídeos em Larga Escala , Mutação , Esterigmatocistina/metabolismo
14.
Fungal Genet Biol ; 105: 52-54, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28559109

RESUMO

Invasive aspergillosis (IA) is a disease of the immunocompromised host and generally caused by the opportunistic fungal pathogen Aspergillus fumigatus. While both host and fungal factors contribute to disease severity and outcome, there are fundamental features of IA development including fungal morphological transition from infectious conidia to tissue-penetrating hyphae as well as host defenses rooted in mechanisms of innate phagocyte function. Here we address recent advances in the field and use real-time in vivo imaging in the larval zebrafish to visually highlight conserved vertebrate innate immune behaviors including macrophage phagocytosis of conidia and neutrophil responses post-germination.


Assuntos
Aspergillus fumigatus/imunologia , Hifas/imunologia , Macrófagos/imunologia , Fagocitose , Esporos Fúngicos/imunologia , Animais , Peixe-Zebra
15.
Cell Rep ; 19(5): 1008-1021, 2017 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-28467895

RESUMO

The Fenton-chemistry-generating properties of copper ions are considered a potent phagolysosome defense against pathogenic microbes, yet our understanding of underlying host/microbe dynamics remains unclear. We address this issue in invasive aspergillosis and demonstrate that host and fungal responses inextricably connect copper and reactive oxygen intermediate (ROI) mechanisms. Loss of the copper-binding transcription factor AceA yields an Aspergillus fumigatus strain displaying increased sensitivity to copper and ROI in vitro, increased intracellular copper concentrations, decreased survival in challenge with murine alveolar macrophages (AMΦs), and reduced virulence in a non-neutropenic murine model. ΔaceA survival is remediated by dampening of host ROI (chemically or genetically) or enhancement of copper-exporting activity (CrpA) in A. fumigatus. Our study exposes a complex host/microbe multifactorial interplay that highlights the importance of host immune status and reveals key targetable A. fumigatus counter-defenses.


Assuntos
Aspergillus/metabolismo , Cobre/metabolismo , Interações Hospedeiro-Patógeno , Espécies Reativas de Oxigênio/metabolismo , Animais , Aspergillus/genética , Aspergillus/patogenicidade , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Células Cultivadas , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Macrófagos/microbiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos ICR , ATPases do Tipo-P/genética , ATPases do Tipo-P/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Virulência/genética
16.
mSphere ; 1(5)2016.
Artigo em Inglês | MEDLINE | ID: mdl-27830189

RESUMO

One mission of the Microbial Observatory Experiments on the International Space Station (ISS) is to examine the traits and diversity of fungal isolates to gain a better understanding of how fungi may adapt to microgravity environments and how this may affect interactions with humans in a closed habitat. Here, we report an initial characterization of two isolates, ISSFT-021 and IF1SW-F4, of Aspergillus fumigatus collected from the ISS and a comparison to the experimentally established clinical isolates Af293 and CEA10. Whole-genome sequencing of ISSFT-021 and IF1SW-F4 showed 54,960 and 52,129 single nucleotide polymorphisms, respectively, compared to Af293, which is consistent with observed genetic heterogeneity among sequenced A. fumigatus isolates from diverse clinical and environmental sources. Assessment of in vitro growth characteristics, secondary metabolite production, and susceptibility to chemical stresses revealed no outstanding differences between ISS and clinical strains that would suggest special adaptation to life aboard the ISS. Virulence assessment in a neutrophil-deficient larval zebrafish model of invasive aspergillosis revealed that both ISSFT-021 and IF1SW-F4 were significantly more lethal than Af293 and CEA10. Taken together, these genomic, in vitro, and in vivo analyses of two A. fumigatus strains isolated from the ISS provide a benchmark for future investigations of these strains and for continuing research on specific microbial isolates from manned space environments. IMPORTANCE As durations of manned space missions increase, it is imperative to understand the long-term consequence of microbial exposure on human health in a closed human habitat. To date, studies aimed at bacterial and fungal contamination of space vessels have highlighted species compositions biased toward hardy, persistent organisms capable of withstanding harsh conditions. In the current study, we assessed traits of two independent Aspergillus fumigatus strains isolated from the International Space Station. Ubiquitously found in terrestrial soil and atmospheric environments, A. fumigatus is a significant opportunistic fungal threat to human health, particularly among the immunocompromised. Using two well-known clinical isolates of A. fumigatus as comparators, we found that both ISS isolates exhibited normal in vitro growth and chemical stress tolerance yet caused higher lethality in a vertebrate model of invasive disease. These findings substantiate the need for additional studies of physical traits and biological activities of microbes adapted to microgravity and other extreme extraterrestrial conditions.

17.
Eukaryot Cell ; 13(10): 1266-77, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24879123

RESUMO

Aspergillus fumigatus is the most common filamentous fungal pathogen of immunocompromised hosts, resulting in invasive aspergillosis (IA) and high mortality rates. Innate immunity is known to be the predominant host defense against A. fumigatus; however, innate phagocyte responses to A. fumigatus in an intact host and their contributions to host survival remain unclear. Here, we describe a larval zebrafish A. fumigatus infection model amenable to real-time imaging of host-fungal interactions in live animals. Following infection with A. fumigatus, innate phagocyte populations exhibit clear preferences for different fungal morphologies: macrophages rapidly phagocytose conidia and form aggregates around hyphae, while the neutrophil response is dependent upon the presence of hyphae. Depletion of macrophages rendered host larvae susceptible to invasive disease. Moreover, a zebrafish model of human leukocyte adhesion deficiency with impaired neutrophil function also resulted in invasive disease and impaired host survival. In contrast, macrophage-deficient but not neutrophil-deficient larvae exhibited attenuated disease following challenge with a less virulent (ΔlaeA) strain of A. fumigatus, which has defects in secondary metabolite production. Taking these results together, we have established a new vertebrate model for studying innate immune responses to A. fumigatus that reveals distinct roles for neutrophils and macrophages in mediating host defense against IA.


Assuntos
Interações Hospedeiro-Parasita/imunologia , Imunidade Inata , Fagócitos/imunologia , Peixe-Zebra/imunologia , Animais , Aspergilose/imunologia , Aspergilose/microbiologia , Aspergillus fumigatus/imunologia , Aspergillus fumigatus/patogenicidade , Humanos , Hifas/imunologia , Hifas/patogenicidade , Larva/imunologia , Larva/microbiologia , Macrófagos/imunologia , Fagocitose , Esporos Fúngicos/imunologia , Esporos Fúngicos/patogenicidade , Peixe-Zebra/microbiologia
18.
Int J Food Microbiol ; 179: 10-7, 2014 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-24699234

RESUMO

Ochratoxin A (OTA) is a potent mycotoxin produced by Aspergillus and Penicillium species and is a common contaminant of a wide variety of food commodities, with Aspergillus carbonarius being the main producer of OTA contamination in grapes and wine. The molecular structure of OTA comprises a dihydroisocoumarin ring linked to phenylalanine and, as shown in different producing fungal species, a polyketide synthase (PKS) is a component of the OTA biosynthetic pathway. Similar to observations in other filamentous ascomycetes, the genome sequence of A. carbonarius contains a large number of genes predicted to encode PKSs. In this work a pks gene identified within the putative OTA cluster of A. carbonarius, designated as AcOTApks, was inactivated and the resulting mutant strain was unable to produce OTA, confirming the role of AcOTApks in this biosynthetic pathway. AcOTApks protein is characteristic of the highly reduced (HR)-PKS family, and also contains a putative methyltransferase domain likely responsible for the addition of the methyl group to the OTA polyketide structure. AcOTApks is different from the ACpks protein that we previously described in A. carbonarius, which showed an expression profile compatible with OTA production. We performed phylogenetic analyses of the ß-ketosynthase and acyl-transferase domains of the OTA PKSs that had been identified and characterized in different OTA producing fungal species. The phylogenetic results were similar for both domains analyzed and showed that OTA PKS of A. carbonarius, Aspergillus niger and Aspergillus ochraceus clustered in a monophyletic group with 100% bootstrap support suggesting a common origin, while the other OTA PKSs analyzed were phylogenetically distant. A quantitative RT-PCR assay monitored AcOTApks expression during fungal growth and concomitant production of OTA by A. carbonarius in synthetic grape medium. A clear correlation between the expression profile of AcOTApks and kinetics of OTA production was observed, with AcOTApks reaching its maximum level of transcription before OTA accumulation in mycelium reached its highest level, confirming the fact that gene transcription always precedes phenotypic production.


Assuntos
Aspergillus/enzimologia , Aspergillus/genética , Ocratoxinas/biossíntese , Policetídeo Sintases/genética , Policetídeo Sintases/metabolismo , Aspergillus/classificação , Sequência de Bases , Deleção de Genes , Regulação Fúngica da Expressão Gênica , Filogenia , Estrutura Terciária de Proteína , Transcriptoma , Vitis/microbiologia
19.
Eukaryot Cell ; 12(11): 1499-508, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24036343

RESUMO

Species of the fungal genus Trichoderma (Hypocreales, Ascomycota) are well-known for their production of various secondary metabolites. Nonribosomal peptides and polyketides represent a major portion of these products. In a recent phylogenomic investigation of Trichoderma polyketide synthase (PKS)-encoding genes, the pks4 from T. reesei was shown to be an orthologue of pigment-forming PKSs involved in synthesis of aurofusarin and bikaverin in Fusarium spp. In this study, we show that deletion of this gene in T. reesei results in loss of green conidial pigmentation and in pigmentation alteration of teleomorph structures. It also has an impact on conidial cell wall stability and the antagonistic abilities of T. reesei against other fungi, including formation of inhibitory metabolites. In addition, deletion of pks4 significantly influences the expression of other PKS-encoding genes of T. reesei. To our knowledge, this is the first indication that a low-molecular-weight pigment-forming PKS is involved in defense, mechanical stability, and stress resistance in fungi.


Assuntos
Proteínas Fúngicas/metabolismo , Pigmentação/genética , Policetídeo Sintases/metabolismo , Estresse Fisiológico , Trichoderma/enzimologia , Parede Celular/metabolismo , Proteínas Fúngicas/genética , Deleção de Genes , Pigmentos Biológicos/biossíntese , Policetídeo Sintases/genética , Esporos Fúngicos/metabolismo , Trichoderma/genética , Trichoderma/metabolismo
20.
Org Lett ; 15(14): 3562-5, 2013 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-23841722

RESUMO

Nonribosomal peptides (NRPs) are natural products biosynthesized by NRP synthetases. A kusA-, pyrG- mutant strain of Aspergillus terreus NIH 2624 was developed that greatly facilitated the gene targeting efficiency in this organism. Application of this tool allowed us to link four major types of NRP-related secondary metabolites to their responsible genes in A. terreus. In addition, an NRP affecting melanin synthesis was also identified in this species.


Assuntos
Aspergillus/química , Biossíntese de Peptídeos Independentes de Ácido Nucleico/genética , Peptídeo Sintases/química , Aspergillus/genética , Aspergillus/metabolismo , Vias Biossintéticas/genética , Marcação de Genes , Peptídeo Sintases/biossíntese , Peptídeo Sintases/genética , Peptídeo Sintases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA