Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sports Health ; : 19417381241247819, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38742396

RESUMO

BACKGROUND: Greater quadriceps strength symmetry is associated with better outcomes after anterior cruciate ligament reconstruction (ACLR). Isometric and isokinetic assessments of quadriceps strength inform therapeutic exercise prescription and return-to-sport decisions. It is unclear whether isometric and isokinetic measures provide similar information post-ACLR. HYPOTHESIS: Quadriceps strength symmetry is similar between isometric and isokinetic assessments. Isokinetic and isometric strength symmetries have similar associations to functional knee kinetics and self-reported knee function. STUDY DESIGN: Cross-sectional study. LEVEL OF EVIDENCE: Level 3. METHODS: NCAA Division I athletes (N = 35), 8.9 ± 2.5 months post-ACLR completed isometric and isokinetic quadriceps strength assessments, countermovement jumps (CMJs), and treadmill running. Self-reported knee function was assessed using the International Knee Documentation Committee Subjective Knee Form (IKDC). Agreement between isometric and isokinetic strength symmetry was assessed using Bland-Altman analysis, with associations to functional knee kinetics and IKDC assessed using Pearson correlations and linear regressions. RESULTS: Mean difference in quadriceps strength symmetry between isokinetic and isometric assessments was 1.0% (95% limits of agreement of -25.1% to 23.0%). Functional knee kinetics during running and CMJ were moderately to strongly associated with isometric strength symmetry (r = 0.64-0.80, P < 0.01) and moderately associated with isokinetic strength symmetry (r = 0.41-0.58, P < 0.01). IKDC scores were weakly to moderately associated with isometric (r = 0.39, P = 0.02) and isokinetic (r = 0.49, P < 0.01) strength symmetry. CONCLUSION: Isokinetic and isometric assessments of quadriceps strength symmetry in collegiate athletes 9 months post-ACLR demonstrated strong agreement. Quadriceps strength symmetry is associated with functional knee kinetic symmetry post-ACLR. CLINICAL RELEVANCE: Considerable individual variation suggests mode of contraction should be consistent throughout postoperative assessment. Isometric strength symmetry may be a better indicator of functional knee kinetic symmetry, while isokinetic strength symmetry may be associated more closely with patient-reported outcomes.

2.
Med Sci Sports Exerc ; 56(7): 1233-1241, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38377013

RESUMO

INTRODUCTION: Athletes after anterior cruciate ligament reconstruction (ACLR) demonstrate altered surgical knee running kinematics and kinetics compared with the nonsurgical limb and healthy controls. The effect of running speed on biomechanics has not been formally assessed in athletes post-ACLR. The purpose of this study was to characterize how knee biomechanics change with running speed between 3.5-7 (EARLY) and 8-13 (LATE) months post-ACLR. METHODS: Fifty-five Division I collegiate athletes post-ACLR completed running analyses (EARLY: n = 40, LATE: n = 41, both: n = 26) at 2.68, 2.95, 3.35, 3.80, and 4.47 m·s -1 . Linear mixed-effects models assessed the influence of limb, speed, time post-ACLR, and their interactions on knee kinematics and kinetics. RESULTS: A significant limb-speed interaction was detected for peak knee flexion, knee flexion excursion, and rate of knee extensor moment ( P < 0.02), controlling for time. From 3.35 to 4.47 m·s -1 , knee flexion excursion decreased by -2.3° (95% confidence interval, -3.6 to -1.0) in the nonsurgical limb and -1.0° (95% confidence interval, -2.3 to -0.3) in the surgical limb. Peak vertical ground reaction force, peak knee extensor moment, and knee negative work increased similarly with speed for both limbs ( P < 0.002). A significant limb-time interaction was detected for all variables ( P < 0.001). Accounting for running speed, improvements in all surgical limb biomechanics were observed from EARLY to LATE ( P < 0.001), except for knee flexion at initial contact ( P = 0.12), but between-limb differences remained ( P < 0.001). CONCLUSIONS: Surgical and nonsurgical knee biomechanics increase similarly with speed in collegiate athletes at EARLY and LATE, with the exception of peak knee flexion, knee flexion excursion, and rate of knee extensor moment. Surgical knee biomechanics improved from EARLY and LATE, but significant between-limb differences persisted.


Assuntos
Reconstrução do Ligamento Cruzado Anterior , Articulação do Joelho , Corrida , Humanos , Fenômenos Biomecânicos , Corrida/fisiologia , Masculino , Adulto Jovem , Feminino , Articulação do Joelho/fisiologia , Lesões do Ligamento Cruzado Anterior/cirurgia , Lesões do Ligamento Cruzado Anterior/fisiopatologia , Joelho/fisiologia , Atletas , Adolescente
3.
Med Sci Sports Exerc ; 56(6): 1077-1084, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38240495

RESUMO

PURPOSE: Understanding muscle-tendon forces (e.g., triceps surae and Achilles tendon) during locomotion may aid in the assessment of human performance, injury risk, and rehabilitation progress. Shear wave tensiometry is a noninvasive technique for assessing in vivo tendon forces that has been recently adapted to a wearable technology. However, previous laboratory-based and outdoor tensiometry studies have not evaluated running. This study was undertaken to assess the capacity for shear wave tensiometry to produce valid measures of Achilles tendon loading during running at a range of speeds. METHODS: Participants walked (1.34 m·s -1 ) and ran (2.68, 3.35, and 4.47 m·s -1 ) on an instrumented treadmill while shear wave tensiometers recorded Achilles tendon wave speeds simultaneously with whole-body kinematic and ground reaction force data. A simple isometric task allowed for the participant-specific conversion of Achilles tendon wave speeds to forces. Achilles tendon forces were compared with ankle torque measures obtained independently via inverse dynamics analyses. Differences in Achilles tendon wave speed, Achilles tendon force, and ankle torque across walking and running speeds were analyzed with linear mixed-effects models. RESULTS: Achilles tendon wave speed, Achilles tendon force, and ankle torque exhibited similar temporal patterns across the stance phase of walking and running. Significant monotonic increases in peak Achilles tendon wave speed (56.0-83.8 m·s -1 ), Achilles tendon force (44.0-98.7 N·kg -1 ), and ankle torque (1.72-3.68 N·m·(kg -1 )) were observed with increasing locomotion speed (1.34-4.47 m·s -1 ). Tensiometry estimates of peak Achilles tendon force during running (8.2-10.1 body weights) were within the range of those estimated previously via indirect methods. CONCLUSIONS: These results set the stage for using tensiometry to evaluate Achilles tendon loading during unobstructed athletic movements, such as running, performed in the field.


Assuntos
Tendão do Calcâneo , Corrida , Dispositivos Eletrônicos Vestíveis , Humanos , Tendão do Calcâneo/fisiologia , Corrida/fisiologia , Fenômenos Biomecânicos , Masculino , Adulto Jovem , Adulto , Feminino , Torque , Caminhada/fisiologia , Músculo Esquelético/fisiologia
4.
Am J Sports Med ; 51(12): 3171-3178, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37681433

RESUMO

BACKGROUND: After anterior cruciate ligament reconstruction (ACLR), altered surgical knee biomechanics during running is common. Although greater quadriceps strength is associated with more symmetrical running knee kinetics after ACLR, abnormal running mechanics persist even after resolution of quadriceps strength deficits. As running is a submaximal effort task characterized by limited time to develop knee extensor torque, quadriceps rate of torque development (RTD) may be more closely associated with recovery of running knee mechanics than peak torque (PT). PURPOSE: To assess the influence of recovery in quadriceps PT and RTD symmetry on knee kinematic and kinetic symmetry during running over the initial 2 years after ACLR. STUDY DESIGN: Cohort study; Level of evidence, 3. METHODS: A total of 39 Division I collegiate athletes (106 testing sessions; 19 female) completed serial isometric performance testing and running analyses between 3 and 24 months after ACLR. Athletes performed maximal and rapid isometric knee extension efforts with each limb to assess PT and RTD between-limb symmetry indices (PTLSI and RTDLSI), respectively. Peak knee flexion difference (PKFDIFF) and peak knee extensor moment limb symmetry index (PKEMLSI) during running were computed. Multivariable linear mixed-effects models assessed the influence of PTLSI and RTDLSI on PKFDIFF and PKEMLSI over the initial 2 years after ACLR. RESULTS: Significant main effects of RTDLSI (P < .001) and time (P≤ .02) but not PTLSI (P≥ .24) were observed for both PKFDIFF and PKEMLSI models. For a 10% increase in RTDLSI, while controlling for PTLSI and time, a 0.9° (95% CI, 0.5°-1.3°) reduction in PKFDIFF and a 3.5% (95% CI, 1.9%-5.1%) increase in PKEMLSI are expected. For every month after ACLR, a 0.2° (95% CI, 0.1°-0.4°) reduction in PKFDIFF and a 1.3% (95% CI, 0.6%-2.0%) increase in PKEMLSI are expected, controlling for PTLSI and RTDLSI. CONCLUSION: Quadriceps RTDLSI was more strongly associated with symmetrical knee biomechanics during running compared with PTLSI or time throughout the first 2 years after ACLR.


Assuntos
Lesões do Ligamento Cruzado Anterior , Reconstrução do Ligamento Cruzado Anterior , Corrida , Humanos , Feminino , Fenômenos Biomecânicos , Estudos de Coortes , Torque , Lesões do Ligamento Cruzado Anterior/cirurgia , Articulação do Joelho/cirurgia , Músculo Quadríceps/cirurgia , Força Muscular
5.
Med Sci Sports Exerc ; 55(9): 1540-1547, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37101347

RESUMO

PURPOSE: Reduced bone mineral density of the distal femur (BMD DF ) can persist long term after anterior cruciate ligament reconstruction (ACLR), even in athletes who return to high levels of competition. These deficits may have implications for the onset and progression of knee osteoarthritis. It is unknown if clinically modifiable factors are associated with losses in BMD DF . This study evaluated the potential influence of knee extensor peak torque (PT), rate of torque development (RTD), as well as peak knee flexion (PKF) angle and peak knee extensor moment (PKEM) during running, on longitudinal changes in BMD DF post-ACLR. METHODS: After ACLR, 57 Division I collegiate athletes underwent serial whole-body dual-energy x-ray absorptiometry (DXA) scans between 3 and 24 months post-ACLR. Of these, 43 athletes also had isometric knee extensor testing (21 female, 105 observations), and 54 had running analyses (26 female, 141 observations). Linear mixed-effects models, controlling for sex, assessed the influence of surgical limb quadriceps performance (PT and RTD), running mechanics (PKF and PKEM), and time post-ACLR on BMD DF (5% and 15% of femur length). Simple slope analyses were used to explore interactions. RESULTS: Athletes with RTD less than 7.20 (N·m)·kg -1 ·s -1 (mean) at 9.3 months post-ACLR demonstrated significant decreases in 15% BMD DF over time ( P = 0.03). Athletes with PKEM during running less than 0.92 (N·m)·kg -1 (-1 SD below mean) at 9.8 months post-ACLR demonstrated significant decreases in 15% BMD DF over time ( P = 0.02). Significant slopes were not detected at -1 SD below the mean for PT (1.75 (N·m)·kg -1 , P = 0.07) and PKF (31.3°, P = 0.08). CONCLUSIONS: Worse quadriceps RTD and running PKEM were associated with a greater loss of BMD DF between 3 and 24 months post-ACLR.


Assuntos
Lesões do Ligamento Cruzado Anterior , Corrida , Humanos , Feminino , Lesões do Ligamento Cruzado Anterior/cirurgia , Fenômenos Biomecânicos , Articulação do Joelho , Músculo Quadríceps , Fêmur , Atletas , Força Muscular
6.
Phys Ther Sport ; 61: 11-19, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36841117

RESUMO

OBJECTIVES: To investigate changes in angle-specific knee extensor torque between limbs from 4 to 12 months post-anterior cruciate ligament reconstruction(ACLR) in Division I collegiate athletes at two different isokinetic velocities. DESIGN: Case-series study. SETTING: Laboratory-based. PARTICIPANTS: Isokinetic knee flexion and extension assessments of 17 athletes (11 female) at 4, 8, and 12 months after ACLR with bone-patellar tendon-bone autograft were evaluated. MAIN OUTCOME MEASURES: Angle-specific curve analyses were performed using statistical parametric mapping for torque data obtained between 14 and 101° at 60°/s and 240°/s velocities. RESULTS: At 60°/s, knee extensor torque of the operated limb increased between 4 and 8 months (18-101°,p < 0.001), 4 and 12 months (28-101°,p < 0.001), and 8 and 12 months post-surgery (62-70°,p = 0.002, and 79-90°,p < 0.001). Knee extensor torque was lower in the operated limb compared to the non-operated limb at 4 (47-97°,p < 0.001) and 8 months (65-90°,p < 0.001) for 60°/s, at 4 (21-89°,p < 0.001) and 8 months (50-77°,p < 0.001) for 240°/s, with no between-limb differences at 12 months post-ACLR for both velocities. CONCLUSIONS: Operated limb knee extensor torque increased throughout the majority of knee range of motion from 4 to 12 months post-ACLR at both isokinetic velocities, while non-operated limb torque only improved through a reduced arc of motion in greater knee flexion angles.


Assuntos
Lesões do Ligamento Cruzado Anterior , Humanos , Feminino , Torque , Lesões do Ligamento Cruzado Anterior/cirurgia , Músculo Quadríceps , Articulação do Joelho , Atletas , Força Muscular
7.
Am J Sports Med ; 50(9): 2410-2416, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35647798

RESUMO

BACKGROUND: Osteoarthritis (OA) is a significant long term concern after anterior cruciate ligament (ACL) reconstruction (ACLR). A low bone mineral density (BMD), particularly in the subchondral region, has been associated with the development of OA and is evident at the knee in patients long after ACLR. It is unknown if persistent BMD deficits are present in high level collegiate athletes. PURPOSE/HYPOTHESIS: The purpose of this study was to evaluate bilateral changes in the BMD of the femur and tibia from before the injury to 24 months after ACLR in collegiate athletes. We hypothesized that the BMD of both the distal femur and the proximal tibia would be significantly reduced within the surgical limb initially postoperatively but return to preinjury levels by 24 months after ACLR. STUDY DESIGN: Cohort study; Level of evidence, 2. METHODS: A total of 33 Division I collegiate athletes were identified between 2010 and 2021 (13 female) who underwent total body dual-energy X-ray absorptiometry (DXA) before sustaining an ACL injury. DXA was repeated at 6, 12, and 24 months after ACLR. Linear mixed effects models assessed differences in the BMD at 5%, 15%, and 50% of the femur's length (F5, F15, F50) and at 5%, 15%, and 50% of the tibia's length (T5, T15, T50) within each limb from before the injury to 24 months after ACLR, reported as Tukey-adjusted P values. RESULTS: Compared with before the injury, the BMD at F5 of the surgical limb was reduced by 0.15 g/cm2 (SE, 0.02 g/cm2) at 6 months (P < .001). The BMD at F15 of the surgical limb was reduced by 0.06 g/cm2 (SE, 0.01 g/cm2), 0.09 g/cm2 (SE, 0.01 g/cm2), and 0.09 g/cm2 (SE, 0.01 g/cm2) at 6, 12, and 24 months, respectively (all P < .001). The BMD at T5 of the nonsurgical limb was reduced by 0.07 g/cm2 (SE, 0.02 g/cm2) at 12 months (P = .02) and 0.10 g/cm2 (SE, 0.02 g/cm2) at 24 months (P = .001). The BMD at T15 of the surgical limb was reduced by 0.07 g/cm2 (SE, 0.01 g/cm2) at 6 months and 0.08 g/cm2 (SE, 0.02 g/cm2) at 12 months (P < .001). CONCLUSION: BMD deficits at F15 of the surgical limb persisted out to 24 months (-7.1%) after ACLR compared with before the injury in collegiate athletes. The BMD at F5 and T15 of the surgical limb was reduced at 6 and 12 months but not at 24 months compared with preinjury levels. For the nonsurgical limb, no significant differences were detected, except for the T5 region at 12 months (-5.1%) and 24 months (-7.2%). The BMD at F50 and T50 of both limbs was not significantly different than preinjury levels at any time after ACLR.


Assuntos
Lesões do Ligamento Cruzado Anterior , Reconstrução do Ligamento Cruzado Anterior , Lesões do Ligamento Cruzado Anterior/cirurgia , Reconstrução do Ligamento Cruzado Anterior/efeitos adversos , Atletas , Densidade Óssea , Estudos de Coortes , Feminino , Fêmur/cirurgia , Humanos , Tíbia/cirurgia
8.
Am J Sports Med ; 49(10): 2607-2614, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34260290

RESUMO

BACKGROUND: Preinjury running biomechanics are an ideal comparator for quantifying recovery after anterior cruciate ligament (ACL) reconstruction (ACLR), allowing for assessments within the surgical and nonsurgical limbs. However, availability of preinjury running biomechanics is rare and has been reported in case studies only. PURPOSE/HYPOTHESIS: The purpose of this study was to determine if running biomechanics return to preinjury levels within the first year after ACLR among collegiate athletes. We hypothesized that (1) surgical knee biomechanics would be significantly reduced shortly after ACLR and would not return to preinjury levels by 12 months and (2) nonsurgical limb mechanics would change significantly from preinjury. STUDY DESIGN: Cohort study; Level of evidence, 2. METHODS: Thirteen Division I collegiate athletes were identified between 2015 and 2020 (6 female; mean ± SD age, 20.7 ± 1.3 years old) who had whole body kinematics and ground-reaction forces recorded during treadmill running (3.7 ± 0.6 m/s) before sustaining an ACL injury. Running analyses were repeated at 4, 6, 8, and 12 months (4M, 6M, 8M, 12M) after ACLR. Linear mixed effects models were used to assess differences in running biomechanics between post-ACLR time points and preinjury within each limb, reported as Tukey-adjusted P values. RESULTS: When compared with preinjury, the surgical limb displayed significant deficits at all postoperative assessments (P values <.01; values reported as least squares mean difference [SE]): peak knee flexion angle (4M, 13.2° [1.4°]; 6M, 9.9° [1.4°]; 8M, 9.8° [1.4°]; 12M, 9.0° [1.5°]), peak knee extensor moment (N·m/kg; 4M, 1.32 [0.13]; 6M, 1.04 [0.13]; 8M, 1.04 [0.13]; 12M, 0.87 [0.15]; 38%-57% deficit), and rate of knee extensor moment (N·m/kg/s; 4M, 22.7 [2.4]; 6M, 17.9 [2.3]; 8M, 17.5 [2.4]; 12M, 16.1 [2.6]; 33%-46% deficit). No changes for these variables from preinjury (P values >.88) were identified in the nonsurgical limb. CONCLUSION: After ACLR, surgical limb knee running biomechanics were not restored to the preinjury state by 12M, while nonsurgical limb mechanics remained unchanged as compared with preinjury. Collegiate athletes after ACLR demonstrate substantial deficits in running mechanics as compared with preinjury that persist beyond the typical return-to-sport time frame. The nonsurgical knee appears to be a valid reference for recovery of the surgical knee mechanics during running, owing to the lack of change within the nonsurgical limb.


Assuntos
Lesões do Ligamento Cruzado Anterior , Reconstrução do Ligamento Cruzado Anterior , Corrida , Adulto , Lesões do Ligamento Cruzado Anterior/cirurgia , Atletas , Fenômenos Biomecânicos , Estudos de Coortes , Feminino , Humanos , Articulação do Joelho/cirurgia , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA