Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 15(28): 33819-33828, 2023 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-37418573

RESUMO

The strategy of acceptor modification is a powerful technique for tuning the emission color of thermally activated delayed fluorescence (TADF) emitters. In this study, we have successfully designed and synthesized three TADF emitters with donor-acceptor (D-A) structures using a 4-(diphenylamino)-2,6-dimethylphenyl (TPAm) donor and various pyridine-3,5-dicarbonitrile (PC) acceptor units. As a result, three compounds named TPAmbPPC, TPAm2NPC, and TPAmCPPC exhibited greenish-yellow to orange-red emissions with high photoluminescent quantum yields (76-100%) in thin films. Remarkably, a greenish-yellow device based on TPAmbPPC and TPAm2NPC showed a high maximum external quantum efficiency (EQEmax) of 39.1 and 39.0%, respectively. Furthermore, benefiting from the suitable steric hindrance between the acceptor and donor, the nondoped organic light-emitting diodes (OLEDs) based on TPAmbPPC demonstrated an exceptional EQEmax of 21.6%, indicating its promising potential as an efficient emitter for the application of OLED applications. Furthermore, orange-red OLED devices based on TPAmCPPC exhibited a high EQEmax of 26.2%, a CE of 50.1 cd A-1, and a PE of 52.4 lm W-1.

2.
Adv Mater ; 33(35): e2008032, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34297444

RESUMO

Highly efficient thermally activated delayed fluorescence (TADF) molecules are in urgent demand for solid-state lighting and full-color displays. Here, the design and synthesis of three triarylamine-pyridine-carbonitrile-based TADF compounds, TPAPPC, TPAmPPC, and tTPAmPPC, are shown. They exhibit excellent photoluminescence quantum yields of 79-100% with small ΔEST values, fast reverse intersystem crossing (RISC), and high horizontal dipole ratios (Θ//  = 86-88%) in the thin films leading to the enhancement of device light outcoupling. Consequently, a green organic light-emitting diode (OLED) based on TPAmPPC shows a high average external quantum efficiency of 38.8 ± 0.6%, a current efficiency of 130.1 ± 2.1 cd A-1 , and a power efficiency of 136.3 ± 2.2 lm W-1 . The highest device efficiency of 39.8% appears to be record-breaking among TADF-based OLEDs to date. In addition, the TPAmPPC-based device shows superior operation lifetime and high-temperature resistance. It is worth noting that the TPA-PPC-based materials have excellent optical properties and the potential for making them strong candidates for TADF practical application.

3.
ACS Appl Mater Interfaces ; 13(11): 13459-13469, 2021 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-33703891

RESUMO

Up to now, the most efficient blue phosphorescent organic light-emitting diode (PhOLED) was achieved with a maximum external quantum efficiency (ηext) of 34.1% by using an exciplex cohost. It still remains a challenge to obtain such high efficiencies using a single-host matrix. In this work, a highly efficient sky-blue PhOLED is successfully fabricated using a newly developed bipolar host material, namely 5-(2-(9H-[3,9'-bicarbazol]-9-yl)phenyl)nicotinonitrile (o-PyCNBCz), which realizes a ηext of 29.4% at a practical luminance of 100 cd m-2 and a maximum ηext of 34.6% (at 23 cd m-2). The present device is characterized by simple configuration with a single host and single emitting layer. o-PyCNBCz also reveals high efficiency of 28.2% (94.8 cd A-1) when used as the host for green PhOLED. Under identical conditions, o-PyCNBCz always outperforms than its isomer 3-PyCNBCz (5-(9-phenyl-9H-[3,9'-bicarbazol]-6-yl)nicotinonitrile) in terms of more balanced charge transportation, higher photoluminescent quantum yields of over 90%, and higher horizontal orientation ratio of the emitting dipole for the host-dopant films, which finally lead to its superior performance in PhOLEDs. It is observed that all these merits of o-PyCNBCz benefit from its ortho-linking style of carbazole (p-type unit) and cyanopyridine (n-type unit) on the phenylene bridge and the resultant molecular conformation.

4.
ACS Appl Mater Interfaces ; 12(20): 23199-23206, 2020 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-32326694

RESUMO

For the application of organic light-emitting diodes (OLEDs) in lighting and panels, the basic requirement is to include a full spectrum color range. Compared with the development of blue and green luminophores in thermally activated delayed fluorescence (TADF) technology, the progress of orange-to-red materials is slow and needs further investigation. In this study, three diboron compound-based materials, dPhADBA, dmAcDBA, and SpAcDBA, were designed and synthesized by nucleophilic arylation of three amine donors on 9,10-diboraanthracene (DBA) in a two-step reaction. With increasing electron-donating ability, they show orange-to-red emission with TADF characteristics. The electroluminescence of these diboron compounds exhibits emissions λmax at 613, 583, and 567 nm for dPhADBA, dmAcDBA, and SpAcDBA, respectively. It is noteworthy that the rod-like D-A-D structures can achieve high horizontal ratios (84-86%) and outstanding device performance for orange-to-red TADF OLEDs: the highest external quantum efficiencies for dPhADBA, dmAcDBA, and SpAcDBA are 11.1 ± 0.5, 24.9 ± 0.5, and 30.0 ± 0.8%, respectively. Therefore, these diboron-based molecules offer a promising avenue for the design of orange-to-red TADF emitters and the development of highly efficient orange-to-red OLEDs.

5.
ACS Appl Mater Interfaces ; 12(14): 16679-16690, 2020 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-32186365

RESUMO

Three homoleptic Pt(II) metal complexes [Pt(imPz)2] (1), [Pt(imiz)2] (2), and [Pt(imMz)2] (3) were synthesized from the treatment of Pt(DMSO)2Cl2 and functional imidazolyl pyrazole in refluxing tetrahydrofuran (THF). Alternatively, the heteroleptic Pt(II) complexes [Pt(imPz)(fppz)] (4), [Pt(imiz)(fppz)] (5), and [Pt(imMz)(fppz)] (6) were obtained from the treatment of a common intermediate [Pt(fppzH)Cl2] with a corresponding imidazolyl chelate. Pt(II) complexes 1, 2, and 5 were studied by single-crystal X-ray diffraction to reveal the corresponding packing arrangement in their crystal lattices, among which both homoleptic complexes 1 and 2 formed monomeric species, while heteroleptic 5 aligned as a dimer with a nonbonding Pt···Pt contact of 3.574 Å. Subsequent photophysical examinations showed that the homoleptic 1-3 and heteroleptic 4-6 exhibited the structured sky-blue ππ* emission and structureless light-green-emitting metal-metal-to-ligand charge transfer (MMLCT) emission in the solid state, respectively. A shortened Pt···Pt interaction of approximately 0.34-0.35 nm was confirmed in thin films of all heteroleptic Pt(II) complexes 4-6 by grazing-incidence X-ray diffraction (GIXD) analyses. Finally, Pt(II) complex 6 was employed as a dopant in the fabrication of organic light-emitting diode (OLED) devices with varied doping ratios, among which OLEDs with only 1 wt % 6 in the SimCP host exhibited a maximum external quantum efficiency (EQE) of 5.8% and CIEx,y values of 0.20, 0.31. In contrast, OLEDs using a nondoped architecture (i.e., 100% of 6 in the emitting layer (EML)) achieved a maximum EQE of 26.8%, current efficiency (CE) of 91.7 cd A-1, and power efficiency (PE) of 80.1 lm·W-1 and CIEx,y values of 0.41, 0.55, manifesting their versatility in various degrees of stacking assemblies and hence facile color-tuning capability on OLEDs.

6.
ACS Appl Mater Interfaces ; 12(2): 2724-2732, 2020 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-31846297

RESUMO

A strategic approach combining a new co-host system and low concentration of new thermally activated delayed fluorescence (TADF) emitters to make efficient blue TADF organic light-emitting diode (OLED) was developed. The benchmark TADF molecule, 4CzIPN, was adopted as a probe to examine the feasibility of a co-host composing of a hole transporter SimCP and an electron transporter oCF3-T2T. As a result, a sky blue device with 1 wt % 4CzIPN doped in SimCP:oCF3-T2T co-host exhibited 100% energy transfer and achieved a high external quantum efficiency (EQE) up to 26.1%. Importantly, this device showed a limited efficiency rolloff with an EQE of 24% at 1000 cd m-2. To further shift the emission toward blue, three new TADF molecules, 4CzIPN-CF3, 3CzIPN-H-CF3, and 3CzIPN-CF3, modified either by lowering the electron-withdrawing ability of the acceptor group or by reducing the number of carbazole donors of 4CzIPN, have been synthesized and characterized. Among them, 4CzIPN-CF3 and 3CzIPN-H-CF3 display hypsochromic shift emissions compared to that of 4CzIPN. These new compounds were then explored for their potential applications as TADF emitters. Blue TADF OLEDs with 1 wt % of 4CzIPN-CF3 and 3CzIPN-H-CF3 dispersed in SimCP:oCF3-T2T co-host achieved EQEs of 23.1 and 16.5% and retained high EQEs of 20.9 and 14.7% at 1000 cd m-2, respectively.

7.
ACS Appl Mater Interfaces ; 10(15): 12930-12936, 2018 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-29600699

RESUMO

Two isomeric host materials (Sy and Asy) comprising carbazole (donor) and CN-substituted pyrimidine (acceptor) were synthesized, characterized, and utilized as host materials for green and blue thermally activated delayed fluorescence (TADF) organic light emitting diodes (OLEDs). Both molecules have high triplet energy and small energy difference between singlet and triplet states, leading to feasible TADF. The different linking topologies of carbazole and CN groups on the pyrimidine core provide distinct photophysical properties and molecular packing manners, which further influence the efficiency as they served as hosts in TADF OLEDs. As compared to Asy-based cases, the Sy-hosted TADF OLED device gave higher maximum external quantum efficiencies (EQE) of 24.0% (vs 22.5%) for green (4CzIPN as a dopant) and 20.4% (vs 15.0%) for blue (2CzTPN as a dopant) and low efficiency roll-off. The high horizontal dipole ratio (Θ ≈ 88%) for both emitters dispersed in Sy and Asy hosts accounts for the high device efficiency. A clear molecular structure-physical property-device performance relationship has been established to highlight the importance of symmetrical structure in TADF host material design.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA