Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Food Chem ; 400: 134063, 2023 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-36084592

RESUMO

Cyclamate is an artificial sweetener with high sweetness and low calories, and is a common sugar substitute for weight control and diabetic patients. However, excessive cyclamate consumption is associated with various health disorders, and hence it is prohibited as a food additive in many countries around the world. The current research proposes a light-shading reaction microfluidic PMMA/paper detection (MPD) system for determining the cyclamate concentration in food. In the current system, inject 10 µL of the extracted sodium cyclamate sample into the sample chamber of the MPD device, perform the diazotization reaction under shading conditions, and then suck it into the detection area through a paper strip, which consists of a paper chip embedded with modified Bratton-Marshall reagent. Once the paper chip is thoroughly wetted, the MPD device is inserted into a microanalysis box, where a fuchsia azo reaction compound is produced through heating at 40 °C for 3 min. The reaction complex is observed by a camera and the reaction image is wirelessly transmitted to a smartphone, and the concentration of sodium cyclamate is measured through the self-developed grayscale software. The results obtained for the sodium cyclamate samples with a concentration in the range of 50-1000 ppm show that the measured gray value changes linearly with the sodium cyclamate concentration, and the correlation coefficient (R2) is 0.9898. By analyzing the concentration of sodium cyclamate in 10 real-world samples, the practical feasibility of the current MPD system is proved. The results showed that the concentration measurement value did not deviate by more than 4.8 % from the value obtained using the conventional liquid chromatography/tandem mass spectrometry (LC-MS/MS) method.


Assuntos
Ciclamatos , Polimetil Metacrilato , Cromatografia Líquida , Ciclamatos/análise , Aditivos Alimentares/análise , Humanos , Microfluídica , Edulcorantes/análise , Espectrometria de Massas em Tandem
2.
Food Chem ; 407: 135118, 2023 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-36493490

RESUMO

A novel assay platform consisting of a finger pump microchip (FPM) and a WiFi-based analytical detection platform is presented for measuring the concentration of methylparaben (MP) in commercial foods. In the presented approach, a low quantity (5 µL) of distilled food sample is dripped onto the FPM and undergoes a modified Fenton reaction at a temperature of 40 °C to form a green-colored complex. The MP concentration is then determined by measuring the color intensity (RGB) of the reaction complex using APP software (self-written) installed on a smartphone. The color intensity Red(R) + Green(G) value of the reaction complex is found to be linearly related (R2 = 0.9944) to the MP concentration for standard samples with different MP concentrations ranging from 100 to 3000 ppm. The proposed method is used to detect the MP concentrations of 12 real-world commercial foods. The MP concentrations measurements are found to deviate by no more than 5.88% from the results obtained using a conventional benchtop method. The presented platform thus offers a feasible and low-cost alternative to existing macroscale techniques for measuring the MP concentration in commercial foods.


Assuntos
Colorimetria , Microfluídica , Colorimetria/métodos , Smartphone
3.
Anal Chim Acta ; 1146: 70-76, 2021 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-33461721

RESUMO

An electrochemical-biosensor (EC-biosensor) microchip consisting of screen-printed electrodes and a double-layer reagent paper detection zone impregnated with amaranth is proposed for the rapid determination of microalbuminuria (MAU) in human urine samples. Under the action of an applied deposition potential, the amaranth is adsorbed on the electrode surface and the subsequent reaction between the modified surface and the MAU content in the urine sample prompts the formation of an inert layer on the electrode surface. The inert layer impedes the transfer of electrons and hence produces a drop in the response peak current, from which the MAU concentration can then be determined. The measurement results obtained for seven artificial urine samples with known MAU concentrations in the range of 0.1-40 mg/dL show that the measured response peak current is related to the MAU concentration with a determination coefficient of R2 = 0.991 in the low concentration range of 0.1-10 mg/dL and R2 = 0.996 in the high concentration range of 10-40 mg/dL. Furthermore, the detection results obtained for 82 actual chronic kidney disease (CKD) patients show an excellent agreement (R2 = 0.988) with the hospital analysis results. Overall, the results confirm that the proposed detection platform provides a convenient and reliable approach for performing sensitive point-of-care testing (POCT) of the MAU content in human urine samples.


Assuntos
Técnicas Biossensoriais , Insuficiência Renal Crônica , Albuminúria/diagnóstico , Técnicas Eletroquímicas , Eletrodos , Humanos , Insuficiência Renal Crônica/diagnóstico
4.
Food Chem ; 345: 128773, 2021 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-33302108

RESUMO

Sodium benzoate (SBA) is a widely-used additive for preventing food spoilage and deterioration and extending the shelf life. However, the concentration of SBA must be controlled under safe regulations to avoid damaging human health. Accordingly, this study proposes a microfluidic colorimetric analysis (MCA) system composing of a wax-printed paper-microchip and a self-made smart analysis equipment for the concentration detection of SBA in common foods and beverages. In the presented method, the distilled SBA sample is mixed with NaOH to obtain a nitro compound and the compound is then dripped onto the reaction area of the paper-microchip, which is embedded with two layers of reagents (namely acetophenone and acetone). The paper-microchip is heated at 120 °C for 20 min to cause a colorimetric reaction and the reaction image is then obtained through a CMOS (complementary metal oxide semiconductor) device and transmitted to a cell-phone over a WiFi connection. Finally, use the self-developed RGB analysis software installed on the cell-phone to obtain the SBA concentration. A calibration curve is constructed using SBA samples with known concentrations ranging from 50 ppm (0.35 mM) to 5000 ppm (35 mM). It is shown that the R + G + B value (Y) of the reaction image and SBA concentration (X) are related via Y = -0.034 X +737.40, with a determination coefficient of R2 = 0.9970. By measuring the SBA concentration of 15 commercially available food and beverage products, the actual feasibility of the current MCA system can be demonstrated. The results show that the difference from the measurement results obtained using the macroscale HPLC method does not exceed 6.0%. Overall, the current system provides a reliable and low-cost technique for quantifying the SBA concentration in food and drink products.


Assuntos
Colorimetria/métodos , Aditivos Alimentares/análise , Análise de Alimentos/métodos , Técnicas Analíticas Microfluídicas/métodos , Benzoato de Sódio/análise , Bebidas/análise , Cromatografia Líquida de Alta Pressão , Humanos , Padrões de Referência
5.
Food Chem ; 286: 316-321, 2019 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-30827613

RESUMO

A convenient assay platform comprising a PET/paper chip (PP-chip) and a smart analytical device is developed for detection of sulphur dioxide (SO2) concentration. In the presented approach, the distilled SO2 solution is dropped onto the detection region of the PP-chip and undergoes a reaction with an acid-based reagent. The resulting color variation is analyzed through a high-resolution camera (CMOS) and the reacted image is processed by a RGB (red, green and blue) analytical app installed on a smartphone. Results show that the known SO2 concentrations ranging from 10 to 300 ppm indicate that the high linear relationship (R2 = 0.9981) between the (R (red) + G (green) - B (blue)) value and SO2 concentration. Moreover, a high measurement resolution is equal to 1.45 ppm/a.u. The presented assay platform was proved to detect the SO2 concentrations of twenty-five practical food samples. Compared with the developed assay platform and certified inspection technique, the deviation of SO2 measurement does not exceed 3.82%. It was satisfactory to apply this developed assay platform to analyze the SO2 concentration in the practical samples.


Assuntos
Análise de Alimentos/métodos , Papel , Dióxido de Enxofre/análise , Análise de Alimentos/instrumentação , Smartphone , Software
6.
Electrophoresis ; 40(10): 1387-1394, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30346029

RESUMO

Insulator-based dielectrophoresis has to date been almost entirely restricted to Newtonian fluids despite the fact that many of the chemical and biological fluids exhibit non-Newtonian characteristics. We present herein an experimental study of the fluid rheological effects on the electroosmotic flow of four types of polymer solutions, i.e., 2000 ppm xanthan gum (XG), 5% polyvinylpyrrolidone (PVP), 3000 ppm polyethylene oxide (PEO), and 200 ppm polyacrylamide (PAA) solutions, through a constriction microchannel under DC electric fields of up to 400 V/cm. We find using particle streakline imaging that the fluid elasticity does not change significantly the electroosmotic flow pattern of weakly shear-thinning PVP and PEO solutions from that of a Newtonian solution. In contrast, the fluid shear-thinning causes multiple pairs of flow circulations in the weakly elastic XG solution, leading to a central jet with a significantly enhanced speed from before to after the channel constriction. These flow vortices are, however, suppressed in the strongly viscoelastic and shear-thinning PAA solution.


Assuntos
Eletro-Osmose/métodos , Soluções/química , Resinas Acrílicas/química , Elasticidade , Eletro-Osmose/instrumentação , Técnicas Analíticas Microfluídicas/instrumentação , Polietilenoglicóis/química , Polissacarídeos Bacterianos/química , Povidona/química , Substâncias Viscoelásticas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA