Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nat Rev Genet ; 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38499769

RESUMO

Endoplasmic reticulum (ER) stress is a potentially lethal condition that is induced by the abnormal accumulation of unfolded or misfolded secretory proteins in the ER. In eukaryotes, ER stress is managed by the unfolded protein response (UPR) through a tightly regulated, yet highly dynamic, reprogramming of gene transcription. Although the core principles of the UPR are similar across eukaryotes, unique features of the plant UPR reflect the adaptability of plants to their ever-changing environments and the need to balance the demands of growth and development with the response to environmental stressors. The past decades have seen notable progress in understanding the mechanisms underlying ER stress sensing and signalling transduction pathways, implicating the UPR in the effects of physiological and induced ER stress on plant growth and crop yield. Facilitated by sequencing technologies and advances in genetic and genomic resources, recent efforts have driven the discovery of transcriptional regulators and elucidated the mechanisms that mediate the dynamic and precise gene regulation in response to ER stress at the systems level.

2.
Methods Mol Biol ; 2772: 261-272, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38411820

RESUMO

Proteotoxic stress of the endoplasmic reticulum (ER) is a potentially lethal condition that ensues when the biosynthetic capacity of the ER is overwhelmed. A sophisticated and largely conserved signaling, known as the unfolded protein response (UPR), is designed to monitor and alleviate ER stress. In plants, the emerging picture of gene regulation by the UPR now appears to be more complex than ever before, requiring multi-omics-enabled network-level approaches to be untangled. In the past decade, with an increasing access and decreasing costs of next-generation sequencing (NGS) and high-throughput protein-DNA interaction (PDI) screening technologies, multitudes of global molecular measurements, known as omics, have been generated and analyzed by the research community to investigate the complex gene regulation of plant UPR. In this chapter, we present a comprehensive catalog of omics resources at different molecular levels (transcriptomes, protein-DNA interactomes, and networks) along with the introduction of key concepts in experimental and computational tools in data generation and analyses. This chapter will serve as a starting point for both experimentalists and bioinformaticians to explore diverse omics datasets for their biological questions in the plant UPR, with likely applications also in other species for conserved mechanisms.


Assuntos
Estresse do Retículo Endoplasmático , Multiômica , Estresse do Retículo Endoplasmático/genética , Resposta a Proteínas não Dobradas/genética , Retículo Endoplasmático , DNA
3.
Nat Commun ; 14(1): 6357, 2023 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-37821453

RESUMO

Plant immunity depends on the secretion of antimicrobial proteins, which occurs through yet-largely unknown mechanisms. The trans-Golgi network (TGN), a hub for intracellular and extracellular trafficking pathways, and the cytoskeleton, which is required for antimicrobial protein secretion, are emerging as pathogen targets to dampen plant immunity. In this work, we demonstrate that tgnap1-2, a loss-of-function mutant of Arabidopsis TGNap1, a TGN-associated and microtubule (MT)-binding protein, is susceptible to Pseudomonas syringae (Pst DC3000). Pst DC3000 infected tgnap1-2 is capable of mobilizing defense pathways, accumulating salicylic acid (SA), and expressing antimicrobial proteins. The susceptibility of tgnap1-2 is due to a failure to efficiently transport antimicrobial proteins to the apoplast in a partially MT-dependent pathway but independent from SA and is additive to the pathogen-antagonizing MIN7, a TGN-associated ARF-GEF protein. Therefore, our data demonstrate that plant immunity relies on TGNap1 for secretion of antimicrobial proteins, and that TGNap1 is a key immunity element that functionally links secretion and cytoskeleton in SA-independent pathogen responses.


Assuntos
Anti-Infecciosos , Proteínas de Arabidopsis , Arabidopsis , Proteínas de Transporte/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Anti-Infecciosos/metabolismo , Ácido Salicílico/metabolismo , Microtúbulos/metabolismo , Pseudomonas syringae/fisiologia , Doenças das Plantas , Regulação da Expressão Gênica de Plantas
4.
Nat Plants ; 9(8): 1333-1346, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37563456

RESUMO

Excessive accumulation of misfolded proteins in the endoplasmic reticulum (ER) causes ER stress, which is an underlying cause of major crop losses and devastating human conditions. ER proteostasis surveillance is mediated by the conserved master regulator of the unfolded protein response (UPR), Inositol Requiring Enzyme 1 (IRE1), which determines cell fate by controlling pro-life and pro-death outcomes through as yet largely unknown mechanisms. Here we report that Arabidopsis IRE1 determines cell fate in ER stress by balancing the ubiquitin-proteasome system (UPS) and UPR through the plant-unique E3 ligase, PHOSPHATASE TYPE 2CA (PP2CA)-INTERACTING RING FINGER PROTEIN 1 (PIR1). Indeed, PIR1 loss leads to suppression of pro-death UPS and the lethal phenotype of an IRE1 loss-of-function mutant in unresolved ER stress in addition to activating pro-survival UPR. Specifically, in ER stress, PIR1 loss stabilizes ABI5, a basic leucine zipper (bZIP) transcription factor, that directly activates expression of the critical UPR regulator gene, bZIP60, triggering transcriptional cascades enhancing pro-survival UPR. Collectively, our results identify new cell fate effectors in plant ER stress by showing that IRE1's coordination of cell death and survival hinges on PIR1, a key pro-death component of the UPS, which controls ABI5, a pro-survival transcriptional activator of bZIP60.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Humanos , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Estresse Proteotóxico , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Arabidopsis/metabolismo , Fatores de Transcrição de Zíper de Leucina Básica/genética , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Retículo Endoplasmático/metabolismo
6.
Methods Mol Biol ; 2581: 385-401, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36413332

RESUMO

Dynamic gene expression changes are primary cellular reactions in response to most stresses and developmental cues in all organisms, including plants. With the ever-decreasing cost and increasing access, high-throughput transcriptome analyses have become a significant research tool to understand a wide spectrum of complex gene regulatory mechanisms. However, it is still challenging to understand the complete picture of gene responses because of the interactive and dynamic nature of gene expression in biological networks. Coexpression network analyses followed by network mapping are being increasingly applied to overcome this challenge. In this chapter, we will introduce detailed instructions for performing a weighted coexpression network analysis (WGCNA) and network visualization using a transcriptome dataset obtained during recovery from endoplasmic reticulum (ER) stress in Arabidopsis thaliana. The streamlined workflow described here allows biologists to identify and visualize coexpression interactions among genes, accessing a comprehensive landscape of dynamic gene expression changes for further downstream analyses using their datasets.


Assuntos
Arabidopsis , Transcriptoma , Perfilação da Expressão Gênica , Redes Reguladoras de Genes , Arabidopsis/genética , Arabidopsis/metabolismo , Estresse do Retículo Endoplasmático/genética
8.
Nat Plants ; 8(5): 481-490, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35577961

RESUMO

Through dynamic activities of conserved master transcription factors (mTFs), the unfolded protein response (UPR) relieves proteostasis imbalance of the endoplasmic reticulum (ER), a condition known as ER stress1,2. Because dysregulated UPR is lethal, the competence for fate changes of the UPR mTFs must be tightly controlled3,4. However, the molecular mechanisms underlying regulatory dynamics of mTFs remain largely elusive. Here, we identified the abscisic acid-related regulator G-class bZIP TF2 (GBF2) and the cis-regulatory element G-box as regulatory components of the plant UPR led by the mTFs, bZIP28 and bZIP60. We demonstrate that, by competing with the mTFs at G-box, GBF2 represses UPR gene expression. Conversely, a gbf2 null mutation enhances UPR gene expression and suppresses the lethality of a bzip28 bzip60 mutant in unresolved ER stress. By demonstrating that GBF2 functions as a transcriptional repressor of the UPR, we address the long-standing challenge of identifying shared signalling components for a better understanding of the dynamic nature and complexity of stress biology. Furthermore, our results identify a new layer of UPR gene regulation hinged upon an antagonistic mTFs-GFB2 competition for proteostasis and cell fate determination.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Fatores de Transcrição de Zíper de Leucina Básica/genética , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Estresse do Retículo Endoplasmático/fisiologia , Regulação da Expressão Gênica de Plantas , Fatores de Transcrição/metabolismo
9.
Commun Biol ; 5(1): 16, 2022 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-35017639

RESUMO

Adverse environmental and pathophysiological situations can overwhelm the biosynthetic capacity of the endoplasmic reticulum (ER), igniting a potentially lethal condition known as ER stress. ER stress hampers growth and triggers a conserved cytoprotective signaling cascade, the unfolded protein response (UPR) for ER homeostasis. As ER stress subsides, growth is resumed. Despite the pivotal role of the UPR in growth restoration, the underlying mechanisms for growth resumption are yet unknown. To discover these, we undertook a genomics approach in the model plant species Arabidopsis thaliana and mined the gene reprogramming roles of the UPR modulators, basic leucine zipper28 (bZIP28) and bZIP60, in ER stress resolution. Through a network modeling and experimental validation, we identified key genes downstream of the UPR bZIP-transcription factors (bZIP-TFs), and demonstrated their functional roles. Our analyses have set up a critical pipeline for functional gene discovery in ER stress resolution with broad applicability across multicellular eukaryotes.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis , Fatores de Transcrição de Zíper de Leucina Básica/genética , Estresse do Retículo Endoplasmático/genética , Resposta a Proteínas não Dobradas/genética , Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/fisiologia , Proteínas de Arabidopsis/metabolismo , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Genômica
10.
Elife ; 102021 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-34491200

RESUMO

With growing populations and pressing environmental problems, future economies will be increasingly plant-based. Now is the time to reimagine plant science as a critical component of fundamental science, agriculture, environmental stewardship, energy, technology and healthcare. This effort requires a conceptual and technological framework to identify and map all cell types, and to comprehensively annotate the localization and organization of molecules at cellular and tissue levels. This framework, called the Plant Cell Atlas (PCA), will be critical for understanding and engineering plant development, physiology and environmental responses. A workshop was convened to discuss the purpose and utility of such an initiative, resulting in a roadmap that acknowledges the current knowledge gaps and technical challenges, and underscores how the PCA initiative can help to overcome them.


Assuntos
Células Vegetais , Agricultura , Chlamydomonas reinhardtii , Cloroplastos , Biologia Computacional , Processamento de Imagem Assistida por Computador , Células Vegetais/fisiologia , Desenvolvimento Vegetal , Plantas/classificação , Plantas/genética , Zea mays
11.
Astrobiology ; 21(3): 367-380, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33325797

RESUMO

Plants are primary producers of food and oxygen on Earth and will likewise be indispensable to the establishment of large-scale sustainable ecosystems and human survival in space. To contribute to the understanding of how plants respond to spaceflight stress, we examined the significance of the unfolded protein response (UPR), a conserved signaling cascade that responds to a number of unfavorable environmental stresses, in the model plant Arabidopsis thaliana. To do so, we performed a large-scale comparative transcriptome profiling in wild type and various UPR-defective mutants during the SpaceX-CRS12 mission to the International Space Station. We established that orbital culture substantially alters the expression of hundreds of stress-related genes compared with ground control conditions. Although expression of those genes varied in the UPR mutants on the ground, it was largely similar across the genotypes in the spaceflight condition. Our results have yielded new information on how plants respond to growth in orbit and support the hypothesis that spaceflight induces the activation of signaling pathways that compensate for the loss of UPR regulators in the control of downstream transcriptional regulatory networks.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Voo Espacial , Ausência de Peso , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Ecossistema , Regulação da Expressão Gênica de Plantas , Humanos , Resposta a Proteínas não Dobradas/genética
12.
Plant J ; 105(1): 254-270, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33098715

RESUMO

Adverse environmental conditions reduce crop productivity and often increase the load of unfolded or misfolded proteins in the endoplasmic reticulum (ER). This potentially lethal condition, known as ER stress, is buffered by the unfolded protein response (UPR), a set of signaling pathways designed to either recover ER functionality or ignite programmed cell death. Despite the biological significance of the UPR to the life of the organism, the regulatory transcriptional landscape underpinning ER stress management is largely unmapped, especially in crops. To fill this significant knowledge gap, we performed a large-scale systems-level analysis of the protein-DNA interaction (PDI) network in maize (Zea mays). Using 23 promoter fragments of six UPR marker genes in a high-throughput enhanced yeast one-hybrid assay, we identified a highly interconnected network of 262 transcription factors (TFs) associated with significant biological traits and 831 PDIs underlying the UPR. We established a temporal hierarchy of TF binding to gene promoters within the same family as well as across different families of TFs. Cistrome analysis revealed the dynamic activities of a variety of cis-regulatory elements (CREs) in ER stress-responsive gene promoters. By integrating the cistrome results into a TF network analysis, we mapped a subnetwork of TFs associated with a CRE that may contribute to UPR management. Finally, we validated the role of a predicted network hub gene using the Arabidopsis system. The PDIs, TF networks, and CREs identified in our work are foundational resources for understanding transcription-regulatory mechanisms in the stress responses and crop improvement.


Assuntos
DNA de Plantas/metabolismo , Proteínas de Plantas/metabolismo , Fatores de Transcrição/metabolismo , Resposta a Proteínas não Dobradas , Zea mays/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Retículo Endoplasmático/metabolismo , Regulação da Expressão Gênica de Plantas , Regiões Promotoras Genéticas , Mapas de Interação de Proteínas , Resposta a Proteínas não Dobradas/genética , Zea mays/genética
13.
Plant J ; 104(2): 302-317, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32717108

RESUMO

Expression reprogramming directed by transcription factors is a primary gene regulation underlying most aspects of the biology of any organism. Our views of how gene regulation is coordinated are dramatically changing thanks to the advent and constant improvement of high-throughput profiling and transcriptional network inference methods: from activities of individual genes to functional interactions across genes. These technical and analytical advances can reveal the topology of transcriptional networks in which hundreds of genes are hierarchically regulated by multiple transcription factors at systems level. Here we review the state of the art of experimental and computational methods used in plant biology research to obtain large-scale datasets and model transcriptional networks. Examples of direct use of these network models and perspectives on their limitations and future directions are also discussed.


Assuntos
Biologia Computacional/métodos , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica de Plantas , Redes Reguladoras de Genes , Cromatina/genética , Imunoprecipitação da Cromatina/métodos , Mapeamento Cromossômico/métodos , Visualização de Dados , Genoma de Planta , Modelos Genéticos , Anotação de Sequência Molecular , Plantas/genética
14.
Trends Biochem Sci ; 45(2): 123-136, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31753702

RESUMO

The endoplasmic reticulum (ER) is responsible for the synthesis of one-third of the cellular proteome and is constantly challenged by physiological and environmental situations that can perturb its homeostasis and lead to the accumulation of misfolded secretory proteins, a condition referred to as ER stress. In response, the ER evokes a set of intracellular signaling processes, collectively known as the unfolded protein response (UPR), which are designed to restore biosynthetic capacity of the ER. As single-cell organisms evolved into multicellular life, the UPR complexity has increased to suit their growth and development. In this review, we discuss recent advances in the understanding of the UPR, emphasizing conserved UPR elements between plants and metazoans and highlighting unique plant-specific features.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Estresse do Retículo Endoplasmático , Arabidopsis/fisiologia , Homeostase , Transdução de Sinais , Transcrição Gênica , Resposta a Proteínas não Dobradas
15.
Sci Rep ; 9(1): 14040, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31575874

RESUMO

Transparent and conducting flexible electrodes have been successfully developed over the last few decades due to their potential applications in optoelectronics. However, recent developments in smart electronics, such as a direct human-machine interface, health-monitoring devices, motion-tracking sensors, and artificially electronic skin also require materials with multifunctional properties such as transparency, flexibility and good portability. In such devices, there remains room to develop transparent and flexible devices such as pressure sensors or temperature sensors. Herein, we demonstrate a fully transparent and flexible bimodal sensor using indium tin oxide (ITO), which is embedded in a plastic substrate. For the proposed pressure sensor, the embedded ITO is detached from its Mayan-pyramid-structured silicon mold by an environmentally friendly method which utilizes water-soluble sacrificial layers. The Mayan-pyramid-based pressure sensor is capable of six different pressure sensations with excellent sensitivity in the range of 100 Pa-10 kPa, high endurance of 105 cycles, and good pulse detection and tactile sensing data processing capabilities through machine learning (ML) algorithms for different surface textures. A 5 × 5-pixel pressure-temperature-based bimodal sensor array with a zigzag-shaped ITO temperature sensor on top of it is also demonstrated without a noticeable interface effect. This work demonstrates the potential to develop transparent bimodal sensors that can be employed for electronic skin (E-skin) applications.

16.
Front Plant Sci ; 10: 110, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30800139

RESUMO

Genome-editing is being implemented in increasing number of plant species using engineered sequence specific nucleases (SSNs) such as Clustered Regularly Interspaced Short Palindromic Repeats/CRISPR-associated systems (CRISPR/Cas9), Transcription activator like effector nucleases (TALENs), and more recently CRISPR/Cas12a. As the tissue culture and regeneration procedures to generate gene-edited events are time consuming, large-scale screening methodologies that rapidly facilitate validation of genome-editing reagents are critical. Plant protoplast cells provide a rapid platform to validate genome-editing reagents. Protoplast transfection with plasmids expressing genome-editing reagents represents an efficient and cost-effective method to screen for in vivo activity of genome-editing constructs and resulting targeted mutagenesis. In this study, we compared three existing methods for detection of editing activity, the T7 endonuclease I assay (T7EI), PCR/restriction enzyme (PCR/RE) digestion, and amplicon-sequencing, with an alternative method which involves tagging a double-stranded oligodeoxynucleotide (dsODN) into the SSN-induced double stranded break and detection of on-target activity of gene-editing reagents by PCR and agarose gel electrophoresis. To validate these methods, multiple reagents including TALENs, CRISPR/Cas9 and Cas9 variants, eCas9(1.1) (enhanced specificity) and Cas9-HF1 (high-fidelity1) were engineered for targeted mutagenesis of Acetolactate synthase1 (ALS1), 5-Enolpyruvylshikimate- 3-phosphate synthase1 (EPSPS1) and their paralogs in potato. While all methods detected editing activity, the PCR detection of dsODN integration provided the most straightforward and easiest method to assess on-target activity of the SSN as well as a method for initial qualitative evaluation of the functionality of genome-editing constructs. Quantitative data on mutagenesis frequencies obtained by amplicon-sequencing of ALS1 revealed that the mutagenesis frequency of CRISPR/Cas9 reagents is better than TALENs. Context-based choice of method for evaluation of gene-editing reagents in protoplast systems, along with advantages and limitations associated with each method, are discussed.

17.
PLoS One ; 13(11): e0206055, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30408049

RESUMO

Crop genetic engineering involves transformation in which transgenic plants are regenerated through tissue culture manipulations that can elicit somaclonal variation due to mutations, translocations, and/or epigenetic alterations. Here, we report on alterations in the transcriptome in a panel of transgenic potato plants engineered to be herbicide resistant. Using an inbred diploid potato clone (DMRH S5 28-5), ten single-insert transgenic lines derived from independent Agrobacterium-mediated transformation events were selected for herbicide resistance using an allelic variant of acetolactate synthase (mALS1). Expression abundances of the single-copy mALS1 transgene varied in individual transgenic lines was correlated with the level of phenotypic herbicide resistance, suggesting the importance of transgene expression in transgenic performance. Using RNA-sequencing, differentially expressed genes were identified with the proportion of genes up-regulated significantly higher than down-regulated genes in the panel, suggesting a differential impact of the plant transformation on gene expression activation compared to repression. Not only were transcription factors among the differentially expressed genes but specific transcription factor binding sites were also enriched in promoter regions of differentially expressed genes in transgenic lines, linking transcriptomic variation with specific transcription factor activity. Collectively, these results provide an improved understanding of transcriptomic variability caused by plant transformation.


Assuntos
Acetolactato Sintase/genética , Resistência a Herbicidas/genética , Plantas Geneticamente Modificadas/genética , Solanum tuberosum/genética , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica de Plantas , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Solanum tuberosum/crescimento & desenvolvimento , Transcriptoma/genética , Transformação Genética , Transgenes/genética
18.
PLoS Genet ; 12(7): e1006197, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27467757

RESUMO

Heterosis has been widely used in agriculture, but the molecular mechanism for this remains largely elusive. In Arabidopsis hybrids and allopolyploids, increased photosynthetic and metabolic activities are linked to altered expression of circadian clock regulators, including CIRCADIAN CLOCK ASSOCIATED1 (CCA1). It is unknown whether a similar mechanism mediates heterosis in maize hybrids. Here we report that higher levels of carbon fixation and starch accumulation in the maize hybrids are associated with altered temporal gene expression. Two maize CCA1 homologs, ZmCCA1a and ZmCCA1b, are diurnally up-regulated in the hybrids. Expressing ZmCCA1 complements the cca1 mutant phenotype in Arabidopsis, and overexpressing ZmCCA1b disrupts circadian rhythms and biomass heterosis. Furthermore, overexpressing ZmCCA1b in maize reduced chlorophyll content and plant height. Reduced height stems from reduced node elongation but not total node number in both greenhouse and field conditions. Phenotypes are less severe in the field than in the greenhouse, suggesting that enhanced light and/or metabolic activities in the field can compensate for altered circadian regulation in growth vigor. Chromatin immunoprecipitation-sequencing (ChIP-seq) analysis reveals a temporal shift of ZmCCA1-binding targets to the early morning in the hybrids, suggesting that activation of morning-phased genes in the hybrids promotes photosynthesis and growth vigor. This temporal shift of ZmCCA1-binding targets correlated with nonadditive and additive gene expression in early and late stages of seedling development. These results could guide breeding better hybrid crops to meet the growing demand in food and bioenergy.


Assuntos
Proteínas de Arabidopsis/genética , Relógios Circadianos/genética , Vigor Híbrido/genética , Fatores de Transcrição/genética , Zea mays/genética , Arabidopsis/genética , Proteínas de Arabidopsis/biossíntese , Biomassa , Ciclo do Carbono/genética , Ritmo Circadiano/genética , Regulação da Expressão Gênica de Plantas , Hibridização Genética , Fotossíntese/genética , Plântula/genética , Amido/genética , Amido/metabolismo , Fatores de Transcrição/biossíntese , Zea mays/crescimento & desenvolvimento
19.
Mol Biol Evol ; 32(9): 2351-66, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25976351

RESUMO

Polyploidy provides evolutionary and morphological novelties in many plants and some animals. However, the role of genome dosage and composition in gene expression changes remains poorly understood. Here, we generated a series of resynthesized Arabidopsis tetraploids that contain 0-4 copies of Arabidopsis thaliana and Arabidopsis arenosa genomes and investigated ploidy and hybridity effects on gene expression. Allelic expression can be defined as dosage dependent (expression levels correlate with genome dosages) or otherwise as dosage independent. Here, we show that many dosage-dependent genes contribute to cell cycle, photosynthesis, and metabolism, whereas dosage-independent genes are enriched in biotic and abiotic stress responses. Interestingly, dosage-dependent genes tend to be preserved in ancient biochemical pathways present in both plant and nonplant species, whereas many dosage-independent genes belong to plant-specific pathways. This is confirmed by an independent analysis using Arabidopsis phylostratigraphic map. For A. thaliana loci, the dosage-dependent alleles are devoid of TEs and tend to correlate with H3K9ac, H3K4me3, and CG methylation, whereas the majority of dosage-independent alleles are enriched with TEs and correspond to H3K27me1, H3K27me3, and CHG (H = A, T, or C) methylation. Furthermore, there is a parent-of-origin effect on nonadditively expressed genes in the reciprocal allotetraploids especially when A. arenosa is used as the pollen donor, leading to metabolic and morphological changes. Thus, ploidy, epigenetic modifications, and cytoplasmic-nuclear interactions shape gene expression diversity in polyploids. Dosage-dependent expression can maintain growth and developmental stability, whereas dosage-independent expression can facilitate functional divergence between homeologs (subfunctionalization and/or neofunctionalization) during polyploid evolution.


Assuntos
Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Expressão Gênica , Alelos , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Sequência de Bases , Epigênese Genética , Evolução Molecular , Dosagem de Genes , Ontologia Genética , Genoma de Planta , Histonas/metabolismo , Poliploidia , Processamento de Proteína Pós-Traducional
20.
J Plant Physiol ; 166(10): 1090-100, 2009 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-19215997

RESUMO

Submergence stress leads to diverse changes in transcription and translation of genes involved in developmental and physiological metabolisms of plants. The basic helix-loop-helix (bHLH) protein family is one of the largest transcriptional factor families in plants, and has been shown to play pivotal roles in diverse biological responses. However, there has been no report on bHLH protein related to submergence stress response. In this study, a novel bHLH gene, NtbHLH, was isolated from tobacco (Nicotiana tabacum) by differential screening of a submergence-stress-induced cDNA library. NtbHLH cDNA is 1027bp in length, with an open reading frame (ORF) of 702 nucleotides encoding 233 amino acid residues that contain the bHLH domain. RNA-blot analyses showed that transcription of NtbHLH was induced by submergence stress, while cold, heat shock, and drought decreased its expression. The gene expression was down-regulated by gibberellins, but ABA and ethylene seemed not to affect it. It was also apparent that NtbHLH expression follows circadian rhythmicity. The electrophoretic mobility shift and chemical cross-linking assays showed that NtbHLH specifically binds to G-box and forms homo-dimers.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Ritmo Circadiano/genética , Inundações , Nicotiana/genética , Northern Blotting , DNA Complementar , Ensaio de Desvio de Mobilidade Eletroforética , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Dados de Sequência Molecular , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Nicotiana/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA