Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nano Lett ; 24(23): 7025-7032, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38832667

RESUMO

Three-dimensional gold and its alloyed nanoporous structures possess high surface areas and strong local electric fields, rendering them ideal substrates for plasmonic molecular detection. Despite enhancing plasmonic properties and altering molecular interactions, the effect of alloy composition on molecular detection capability has not yet been explored. Here, we report molecular interactions between nanoporous gold alloys and charged molecules by controlling the alloy composition. We demonstrate enhanced adsorption of negatively charged molecules onto the alloy surface due to positively charged gold atoms and a shifted d-band center through charge transfer between gold and other metals. Despite similar EM field intensities, nanoporous gold with silver (Au/Ag) achieves SERS enhancement factors (EF) up to 6 orders of magnitude higher than those of other alloys for negatively charged molecules. Finally, nanoporous Au/Ag detects amyloid-beta at concentrations as low as approximately 1 fM, with SERS EF up to 10 orders of magnitude higher than that of a monolayer of Au nanoparticles.

2.
Artigo em Inglês | MEDLINE | ID: mdl-37917011

RESUMO

Core-shell metallic nanoparticles (NPs) are considered promising materials for their multifunctional properties. However, traditionally synthesized NPs have crucial issues that their ligands interfere with the direct interaction between NPs and neighboring materials, and it is very difficult to form a uniform film without the mixture of a template. In this article, we report an unprecedented exfoliation technology for fabricating a scalable ligand-free core-semishell metal NP film based on the evaporation system through a self-assembled monolayer-assisted surface energy control combined with a deep ultraviolet surface treatment around the core NPs. Owing to fabrication merits, the properties of the core-semishell NPs can be easily modulated depending on the shell material; the ligand-free core-shell NPs are directly attached to the surface of a material by Scotch tape, allowing interfacial interactions. Therefore, the proposed technique presents a new scientific method for studying interfacial interactions with heterogeneous materials and can be universally applied in optoelectronic devices, biopatches, photocatalysts, and so on.

3.
Materials (Basel) ; 16(8)2023 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-37110026

RESUMO

In this study, we synthesized NaYF4-based downshifting nanophosphors (DSNPs), and fabricated DSNP-polydimethylsiloxane (PDMS) composites. Nd3+ ions were doped into the core and shell to increase absorbance at 800 nm. Yb3+ ions were co-doped into the core to achieve intense near-infrared (NIR) luminescence. To further enhance the NIR luminescence, NaYF4:Nd,Yb/NaYF4:Nd/NaYF4 core/shell/shell (C/S/S) DSNPs were synthesized. The C/S/S DSNPs showed a 3.0-fold enhanced NIR emission at 978 nm compared with core DSNPs under 800 nm NIR light. The synthesized C/S/S DSNPs showed high thermal stability and photostability against the irradiation with ultraviolet light and NIR light. Moreover, for application as luminescent solar concentrators (LSCs), C/S/S DSNPs were incorporated into the PDMS polymer, and the DSNP-PDMS composite containing 0.25 wt% of C/S/S DSNP was fabricated. The DSNP-PDMS composite showed high transparency (average transmittance = 79.4% for the visible spectral range of 380-750 nm). This result demonstrates the applicability of the DSNP-PDMS composite in transparent photovoltaic modules.

4.
Sci Rep ; 12(1): 17595, 2022 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-36266448

RESUMO

In this study, heavy-metal-free orange light-emitting ZnSe:Mn2+/ZnS doped-core/shell (d-C/S) quantum dots (QDs) were synthesized using a nucleation doping strategy. To synthesize high quality d-C/S QDs with high photoluminescence (PL) quantum yield (QY), the Mn2+ concentration was optimized. The resulting ZnSe:Mn2+(5%)/ZnS d-C/S QDs showed a high PL QY of 83.3%. The optical properties of the synthesized QDs were characterized by absorption and PL spectroscopy. Their structural and compositional properties were studied by X-ray diffraction, transmission electron microscopy, and energy dispersive X-ray spectroscopy. After doping Mn2+ into a ZnSe core, the ZnSe:Mn2+/ZnS d-C/S QDs showed a large Stokes shift of 170 nm. The ZnSe:Mn2+/ZnS d-C/S QDs were embedded in a poly(lauryl methacrylate) (PLMA) polymer matrix and the ZnSe:Mn2+/ZnS-based polymer film was fabricated. The fabricated ZnSe:Mn2+/ZnS-PLMA film was highly transparent in the visible spectral region (transmittance > 83.8% for λ ≥ 450 nm) and it exhibited bright orange light under air mass (AM) 1.5G illumination using a solar simulator. The optical path-dependent PL measurement of the ZnSe:Mn2+/ZnS-PLMA film showed no PL band shift and minimal PL decrease under variation of excitation position. These results indicate that the highly efficient and large Stokes shift-emitting ZnSe:Mn2+/ZnS QDs are promising for application to luminescent solar concentrators.

5.
Adv Mater ; 34(5): e2106225, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34796554

RESUMO

A super-boosted hybrid plasmonic upconversion (UC) architecture comprising a hierarchical plasmonic upconversion (HPU) film and a polymeric microlens array (MLA) film is proposed for efficient photodetection at a wavelength of 1550 nm. Plasmonic metasurfaces and Au core-satellite nanoassembly (CSNA) films can strongly induce a more effective plasmonic effect by providing numerous hot spots in an intense local electromagnetic field up to wavelengths exceeding 1550 nm. Hence, significant UC emission enhancement is realized via the amplified plasmonic coupling of an HPU film comprising an Au CSNA and UC nanoparticles. Furthermore, an MLA polymer film is synergistically coupled with the HPU film, thereby focusing the incident near-infrared light in the micrometer region, including the plasmonic nanostructure area. Consequently, the plasmonic effect super-boosted by microfocusing the incident light, significantly lowers the detectable power limit of a device, resulting in superior sensitivity and responsivity at weak excitation powers. Finally, a triple-cation perovskite-based photodetector coupled with the hybrid plasmonic UC film exhibits the excellent values of responsivity and detectivity of 9.80 A W-1 and 8.22 × 1012 Jones at a weak power density of ≈0.03 mW cm-2 , respectively, demonstrating that the device performance is enhanced by more than 104 magnitudes over a reference sample.

6.
Materials (Basel) ; 13(23)2020 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-33255745

RESUMO

In this study, Li-based blue- and green-emitting core@shell (C@S) upconversion nanophosphors (UCNPs) and NaGdF4-based red-emitting C@S UCNPs were synthesized, and IR-808 dyes were conjugated with the C@S UCNPs to enhance upconversion (UC) luminescence. The surface of the as-synthesized C@S UCNPs, which was originally capped with oleic acid, was modified with BF4- to conjugate the IR-808 dye having a carboxyl functional group to the surface of the UCNPs. After the conjugation with IR-808 dyes, absorbance of the UCNPs was significantly increased. As a result, dye-sensitized blue (B)-, green (G)-, and red (R)-emitting UCNPs exhibited 87-fold, 10.8-fold, and 110-fold enhanced UC luminescence compared with B-, G-, and R-emitting Nd3+-doped C@S UCNPs under 800 nm near-infrared (NIR) light excitation, respectively. Consequently, dye-sensitized UCNPs exhibiting strong UC luminescence under 800 nm NIR light excitation have high applicability in a variety of biological applications.

7.
Sci Rep ; 10(1): 11340, 2020 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-32647248

RESUMO

Molybdenum disulfide has been intensively studied as a promising material for photodetector applications because of its excellent electrical and optical properties. We report a multilayer MoS2 film attached with a plasmonic tape for near-infrared (NIR) detection. MoS2 flakes are chemically exfoliated and transferred onto a polymer substrate, and silver nanoparticles (AgNPs) dewetted thermally on a substrate are transferred onto a Scotch tape. The Scotch tape with AgNPs is attached directly and simply onto the MoS2 flakes. Consequently, the NIR photoresponse of the MoS2 device is critically enhanced. The proposed tape transfer method enables the formation of plasmonic structures on arbitrary substrates, such as a polymer substrate, without requiring a high-temperature process. The performance of AgNPs-MoS2 photodetectors is approximately four times higher than that of bare MoS2 devices.

8.
Nanotechnology ; 31(24): 245202, 2020 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-32155592

RESUMO

Optimization and performance enhancement of a low-cost, solution-processed InGaZnO (IGZO) resistance random access memory (ReRAM) device using the manipulation of global and local oxygen vacancy (Vo) stoichiometry in metal oxide thin films was demonstrated. Control of the overall Ga composition within the IGZO thin film reduced the excessive formation of oxygen vacancies allowing for a reproducible resistance switching mechanism. Furthermore, sophisticated local control of stoichiometric Vo is achieved using a 5 nm Ni layer at the IGZO interface to serve as an oxygen capturing layer through the formation of NiOx, consequently facilitating the formation of conductive filaments (CFs) and preventing abrupt degradation of device performance. Additionally, reducing the cell dimension of the IGZO-based ReRAMs using a cross-bar electrode structure appeared to drastically improve their performances parameters, including operating voltage and resistance distribution due to the suppression of excessive CFs formation. The optimized ReRAM devices exhibited stable unipolar resistive switching behavior with an endurance of >200 cycles, a retention time of 104 s at 85 °C and an on/off ratio greater than about 102. Therefore, our findings address the demand for low-cost memory devices with high stability and endurance for next-generation data storage technology.

9.
Anal Chem ; 91(20): 13152-13157, 2019 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-31525290

RESUMO

Detection of small metabolites is essential for monitoring and optimizing biological gas conversion. Currently, such detection is typically done by liquid chromatography with offline sampling. However, this method often requires large equipment with multiple separation columns and is at risk of serious microbial contamination during sampling. Here we propose real-time optical detection of small metabolites using uniform plasmonic nanoparticles monolayers produced by capillary-assisted transfer. We reproducibly fabricate metal nanoparticles monolayers with a diameter of ∼1 mm for the detection of acetate, butyrate, and glucose by a glass capillary tube. Metal nanoparticles monolayers are not only uniform in terms of average interparticle distance but also structurally stable under dynamic fluidic conditions. The monolayers resistant to fluid shear stress with surface-enhanced Raman scattering are able to reversibly monitor the concentration of acetate and sensitively detect acetate and glucose at levels as low as 10 µM, which is more than 2 orders of magnitude lower than the concentration range of typical biological gas conversion. In addition, structurally similar metabolites such as acetate and butyrate, when mixed, become distinguishable by our method.


Assuntos
Ácido Acético/análise , Butiratos/análise , Glucose/análise , Nanopartículas Metálicas/química , Ouro/química , Limite de Detecção , Nanosferas/química , Nanotubos/química , Estudo de Prova de Conceito , Prata/química , Análise Espectral Raman
10.
Nanoscale ; 10(41): 19383-19389, 2018 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-30307003

RESUMO

We fabricated a functional pentacene/CH3NH3PbI3-xClx perovskite interface where optical gating and field assisted charge retention occur. Using a pentacene/perovskite field effect transistor (FET) test platform, we investigated the interfacial charge transfer associated with optical gating through threshold voltage measurements under illumination. Importantly, bistable electrical conduction in pentacene/perovskite FET devices was achieved as a result of field-induced charge retention at the interface and the origin is discussed to be associated with interfacial charging at the pentacene/perovskite interface. Interfacial contact modification associated with ion migration and other possible effects in the perovskite layer plays a crucial role in forming a functional interface involving organic semiconducting materials.

11.
Adv Mater ; 28(36): 7899-7909, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27376395

RESUMO

Three-order enhanced upconversion luminescence from upconversion nanoparticles is suggested by way of a promising platform utilizing a disordered array of plasmonic metal nanoparticles. Its application toward highly sensitive NIR photodetectors is discussed.

12.
Nanoscale ; 8(4): 2071-80, 2016 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-26700194

RESUMO

We report an experimental study on the highly enhanced upconversion luminescence (UCL) of ß-NaYF4:Yb(3+)/Er(3+) nanocrystals (NCs) in a plasmonic architecture. For the architecture, we designed a thin film device composed of a thin layer of NCs capped with an upper layer of a plasmonic nanodome array (pNDA) and lower substrate of a back reflector (BR). Compared to the UCL intensity observed in a glass reference substrate, the designed plasmonic architecture exhibits distinctively strong luminescence enhanced by up to 800-fold. The intensity considerably exceeds the previously reported luminescence intensity regardless of the excitation power. We elucidated a mechanism explaining the large UCL enhancement, which quantitatively analyzes the combination of plasmonic effects as well as multiple large scattering. More importantly, we provided a detailed analysis of the Ag NDA-derived and BR-assisted plasmonic effects that contribute to an increase in the radiative decay rate and an enhancement of the absorption of incident light. The present study is expected to be beneficial for designing a thin film-based plasmonic structure with a randomized metal nanostructure for high-efficiency photovoltaic devices and infrared detectors.

13.
Nanoscale ; 7(44): 18642-50, 2015 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-26497718

RESUMO

Adhesive polydimethylsiloxane (PDMS) films were developed to increase the performance of photovoltaic devices. The films combined two separate features of moth-eye patterns to reduce the reflection of incident light at the film surface and luminescent down-shifting (LDS) CdZnS/ZnS-core/shell quantum dots (QDs) to convert ultraviolet (UV) radiation into visible light at 445 nm. The films were both flexible and self-adhesive, easily attachable to any surface of a solar cell module. By simply attaching the developed films on high-efficiency GaAs solar cells, the short circuit current density and power conversion efficiency of the solar cells increased to 33.8 mA cm(-2) and 28.7%, by 1.1 mA cm(-2) and 0.9 percentage points in absolute values, respectively. We showed that the enhancement of the GaAs solar cells was attributed to both the anti-reflection (AR) properties of the moth-eye patterns and the LDS of QDs using a scattering matrix method and external quantum efficiency measurements. The developed films are versatile in application for solar cells, and expected to aid in overcoming limits of material absorption and device structures.

14.
Nanoscale ; 7(30): 12828-32, 2015 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-26172422

RESUMO

The triplet-triplet annihilation (TTA) efficiency in bicomponent organic systems is investigated by employing a gap plasmon resonator. In our structure, strong absorption peaks arising from coupling between localized surface plasmons and surface plasmon polaritons closely overlap the Q band of porphyrin, leading to higher triplet concentrations within the film. We find that at ultralow excitation intensities on the order of watts per square centimeter (W cm(-2)), TTA becomes predominant for the organic system on a gap plasmon resonator. A strong surface-enhanced Raman scattering intensity is observed in this substrate, verifying the near-field enhancement.

15.
ACS Nano ; 9(5): 5486-99, 2015 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-25897466

RESUMO

Single-crystalline alloy II-VI semiconductor nanostructures have been used as functional materials to propel photonic and optoelectronic device performance in a broad range of the visible spectrum. Their functionality depends on the stable modulation of the direct band gap (Eg), which can be finely tuned by controlling the properties of alloy composition, crystallinity, and morphology. We report on the structural correlation of the optical band gap anomaly of quaternary alloy CdxZn1-xSySe1-y single-crystalline nanostructures that exhibit different morphologies, such as nanowires (NWs), nanobelts (NBs), and nanosheets (NSs), and cover a wide range of the visible spectrum (Eg = 1.96-2.88 eV). Using pulsed laser deposition, the nanostructures evolve from NWs via NBs to NSs with decreasing growth temperature. The effects of the growth temperature are also reflected in the systematic variation of the composition. The alloy nanostructures firmly maintain single crystallinity of the hexagonal wurtzite and the nanoscale morphology, with no distortion of lattice parameters, satisfying the virtual crystal model. For the optical properties, however, we observed distinct structure-dependent band gap anomalies: the disappearance of bowing for NWs and maximum and slightly reduced bowing for NBs and NSs, respectively. We tried to uncover the underlying mechanism that bridges the structural properties and the optical anomaly using an empirical pseudopotential model calculation of electronic band structures. From the calculations, we found that the optical bowings in NBs and NSs were due to residual strain, by which they are also distinguishable from each other: large for NBs and small for NSs. To explain the origin of the residual strain, we suggest a semiempirical model that considers intrinsic atomic disorder, resulting from the bond length mismatch, combined with the strain relaxation factor as a function of the width-to-thickness ratio of the NBs or NSs. The model agreed well with the observed optical bowing of the alloy nanostructures in which a mechanism for the maximum bowing for NBs is explained. The present systematic study on the structural-optical properties correlation opens a new perspective to understand the morphology- and composition-dependent unique optical properties of II-VI alloy nanostructures as well as a comprehensive strategy to design a facile band gap modulation method of preparing photoconverting and photodetecting materials.

16.
Nano Lett ; 15(4): 2491-7, 2015 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-25756859

RESUMO

We describe a metal nanodisk-insulator-metal (MIM) structure that enhances lanthanide-based upconversion (UC) and downshifting (DS) simultaneously. The structure was fabricated using a nanotransfer printing method that facilitates large-area applications of nanostructures for optoelectronic devices. The proposed MIM structure is a promising way to harness the entire solar spectrum by converting both ultraviolet and near-infrared to visible light concurrently through resonant-mode excitation. The overall photoluminescence enhancements of the UC and DS were 174- and 29-fold, respectively.


Assuntos
Medições Luminescentes/métodos , Nanopartículas Metálicas/química , Nanopartículas Metálicas/ultraestrutura , Impressão Molecular/métodos , Prata/química , Ressonância de Plasmônio de Superfície/métodos , Luz , Teste de Materiais , Espalhamento de Radiação
17.
Adv Mater ; 27(7): 1182-8, 2015 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-25580710

RESUMO

Incorporation of Zr into an AlOx matrix generates an intrinsically activated ZAO surface enabling the formation of a stable semiconducting IGZO film and good interfacial properties. Photochemically annealed metal-oxide devices and circuits with the optimized sol-gel ZAO dielectric and IGZO semiconductor layers demonstrate the high performance and electrically/mechanically stable operation of flexible electronics fabricated via a low-temperature solution process.


Assuntos
Géis/química , Metais/química , Semicondutores , Óxido de Alumínio/química , Capacitância Elétrica , Óxidos/química , Soluções/química , Temperatura , Raios Ultravioleta , Zircônio/química
18.
ACS Nano ; 8(7): 6701-12, 2014 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-24895838

RESUMO

Origins of the irreversible capacity loss were addressed through probing changes in the electronic and structural properties of hollow-structured Co3O4 nanoparticles (NPs) during lithiation and delithiation using electrochemical Co3O4 transistor devices that function as a Co3O4 Li-ion battery. Additive-free Co3O4 NPs were assembled into a Li-ion battery, allowing us to isolate and explore the effects of the Co and Li2O formation/decomposition conversion reactions on the electrical and structural degradation within Co3O4 NP films. NP films ranging between a single monolayer and multilayered film hundreds of nanometers thick prepared with blade-coating and electrophoretic deposition methods, respectively, were embedded in the transistor devices for in situ conduction measurements as a function of battery cycles. During battery operation, the electronic and structural properties of Co3O4 NP films in the bulk, Co3O4/electrolyte, and Co3O4/current collector interfaces were spatially mapped to address the origin of the initial irreversible capacity loss from the first lithiation process. Further, change in carrier injection/extraction between the current collector and the Co3O4 NPs was explored using a modified electrochemical transistor device with multiple voltage probes along the electrical channel.

19.
J Nanosci Nanotechnol ; 14(11): 8237-41, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25958507

RESUMO

The fabrication process for the blue GaN inorganic light emitting diode (ILED) on flexible polyimide (PI) substrate by laser lift off (LLO) method was demonstrated. The GaN epi-structure was grown on patterned sapphire wafer. GaN samples were temporary bonded with polyimide substrate by flexible silver epoxy. Separation of the whole GaN LED film from GaN/sapphire wafer was accomplished using a single KrF excimer (248 nm) laser pulse directed through the transparent sapphire wafer. Device fabrication was carried out on both rigid silicon and flexible polyimide substrate, and I-V performance for both devices was measured. The optimized LLO process for the whole GaN LED film transfer would be applicable in flexible LED applications without compromising electrical properties.


Assuntos
Imidas/química , Lasers , Nanoestruturas/química , Semicondutores , Óxido de Alumínio/química , Gálio/química , Luz , Teste de Materiais , Propriedades de Superfície
20.
Sci Rep ; 3: 3253, 2013 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-24247038

RESUMO

This paper reports for the first time the luminescent property of polystyrene (PS), produced by pulsed ultra violet laser irradiation. We have discovered that, in air, ultra-violet (UV) irradiated PS nanospheres emit bright white light with the dominant peak at 510 nm, while in vacuum they emit in the near-blue region. From the comparison of PS nanospheres irradiated in vacuum and air, we suggest that the white luminescence is due to the formation of carbonyl groups on the surface of PS by photochemical oxidation. Our results potentially offer a new route and strategy for white light sources.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA