Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Antiviral Res ; 212: 105576, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36870394

RESUMO

Rapid emergence of new variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has prompted an urgent need for the development of broadly applicable and potently neutralizing antibody platform against the SARS-CoV-2, which can be used for combatting the coronavirus disease 2019 (COVID-19). In this study, based on a noncompeting pair of phage display-derived human monoclonal antibodies (mAbs) specific to the receptor-binding domain (RBD) of SARS-CoV-2 isolated from human synthetic antibody library, we generated K202.B, a novel engineered bispecific antibody with an immunoglobulin G4-single-chain variable fragment design, with sub- or low nanomolar antigen-binding avidity. Compared with the parental mAbs or mAb cocktail, the K202.B antibody showed superior neutralizing potential against a variety of SARS-CoV-2 variants in vitro. Furthermore, structural analysis of bispecific antibody-antigen complexes using cryo-electron microscopy revealed the mode of action of K202.B complexed with a fully open three-RBD-up conformation of SARS-CoV-2 trimeric spike proteins by simultaneously interconnecting two independent epitopes of the SARS-CoV-2 RBD via inter-protomer interactions. Intravenous monotherapy using K202.B exhibited potent neutralizing activity in SARS-CoV-2 wild-type- and B.1.617.2 variant-infected mouse models, without significant toxicity in vivo. The results indicate that this novel approach of development of immunoglobulin G4-based bispecific antibody from an established human recombinant antibody library is likely to be an effective strategy for the rapid development of bispecific antibodies, and timely management against fast-evolving SARS-CoV-2 variants.


Assuntos
Anticorpos Biespecíficos , COVID-19 , Animais , Camundongos , Humanos , SARS-CoV-2/metabolismo , Anticorpos Antivirais , Anticorpos Biespecíficos/farmacologia , Microscopia Crioeletrônica , Anticorpos Neutralizantes , Glicoproteína da Espícula de Coronavírus
2.
J Microbiol ; 60(11): 1086-1094, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36318359

RESUMO

Fibroblast growth factor 11 (FGF11) is one of intracrine FGFs (iFGFs), which function within cells. Unlike canonical FGFs, FGF11 remains intracellularly and plays biological roles in FGF receptor (FGFR)-independent manner. Here, we established an expression system of recombinant FGF11 proteins in E. coli and investigated whether the extracellular administration of FGF11 can activate cellular signaling. Human FGF11 has two isoforms, FGF11a and FGF11b, depending on the presence of nuclear localization sequences (NLSs) in the N-terminus. Because these two isoforms are unstable, we prepared an FGF11a-Mut by substituting three cysteine residues in the NLS with serine and FGF11b-ΔC with C-terminal truncation. The introduction of mutation in the NLS improved the solubility of FGF11 prepared from E. coli. Exogenous addition of FGF11b and FGF11b-ΔC to BALB3T3 increased cell proliferation, while FGF11a-Mut exerted no effect. FGF11b-ΔC showed higher cell proliferation activity and FGFR signaling than FGF11b. The cell-proliferating activities of FGF11b and FGF11b-ΔC were blocked by an FGFR1 inhibitor or a recombinant FGFR1, confirming the FGFR1-dependent extracellular activity of FGF11b. The analysis of circular dichroism suggested that the C-terminus of FGF11 has an α-helical structure, which may affect its interaction with FGFR1. These results suggest that the N-and C-terminus of recombinant FGF11 are involved in the activation of FGFR1. The above results provide novel insights into the function and mechanism of FGF11 that may aid the development of useful ligands for FGFR regulation.


Assuntos
Escherichia coli , Fatores de Crescimento de Fibroblastos , Humanos , Escherichia coli/metabolismo , Fatores de Crescimento de Fibroblastos/genética , Fatores de Crescimento de Fibroblastos/metabolismo , Transdução de Sinais/fisiologia , Proliferação de Células , Isoformas de Proteínas/metabolismo , Proteínas Recombinantes/metabolismo
3.
Yonsei Med J ; 59(3): 366-375, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29611398

RESUMO

PURPOSE: Vascular smooth muscle cell (VSMC) proliferation induced by native low-density lipoprotein (nLDL) stimulation is dependent on superoxide production from activated NADPH oxidase. The present study aimed to investigate whether the novel arginase inhibitor limonin could suppress nLDL-induced VSMC proliferation and to examine related mechanisms. MATERIALS AND METHODS: Isolated VSMCs from rat aortas were treated with nLDL, and cell proliferation was measured by WST-1 and BrdU assays. NADPH oxidase activation was evaluated by lucigenin-induced chemiluminescence, and phosphorylation of protein kinase C (PKC) ßII and extracellular signal-regulated kinase (ERK) 1/2 was determined by western blot analysis. Mitochondrial reactive oxygen species (ROS) generation was assessed using MitoSOX-red, and intracellular L-arginine concentrations were determined by high-performance liquid chromatography (HPLC) in the presence or absence of limonin. RESULTS: Limonin inhibited arginase I and II activity in the uncompetitive mode, and prevented nLDL-induced VSMC proliferation in a p21Waf1/Cip1-dependent manner without affecting arginase protein levels. Limonin blocked PKCßII phosphorylation, but not ERK1/2 phosphorylation, and translocation of p47phox to the membrane was decreased, as was superoxide production in nLDL-stimulated VSMCs. Moreover, mitochondrial ROS generation was increased by nLDL stimulation and blocked by preincubation with limonin. Mitochondrial ROS production was responsible for the phosphorylation of PKCßII. HPLC analysis showed that arginase inhibition with limonin increases intracellular L-arginine concentrations, but decreases polyamine concentrations. L-Arginine treatment prevented PKCßII phosphorylation without affecting ERK1/2 phosphorylation. CONCLUSION: Increased L-arginine levels following limonin-dependent arginase inhibition prohibited NADPH oxidase activation in a PKCßII-dependent manner, and blocked nLDL-stimulated VSMC proliferation.


Assuntos
Proliferação de Células , Lipoproteínas LDL/metabolismo , Músculo Liso Vascular/efeitos dos fármacos , Miócitos de Músculo Liso/efeitos dos fármacos , NADPH Oxidases/antagonistas & inibidores , Espécies Reativas de Oxigênio/metabolismo , Animais , Arginase/metabolismo , Arginina/metabolismo , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Masculino , Proteína Quinase 3 Ativada por Mitógeno , Proteínas Quinases Ativadas por Mitógeno , Músculo Liso Vascular/fisiologia , Miócitos de Músculo Liso/metabolismo , NADPH Oxidases/metabolismo , NADPH Oxidases/fisiologia , Oxirredução , Fosforilação , Ratos , Espécies Reativas de Oxigênio/análise
4.
Mol Cell Biol ; 37(14)2017 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-28483911

RESUMO

The human CD99 protein is a 32-kDa glycosylated transmembrane protein that regulates various cellular responses, including cell adhesion and leukocyte extravasation. We previously reported that CD99 activation suppresses ß1 integrin activity through dephosphorylation of focal adhesion kinase (FAK) at Y397. We explored a molecular mechanism underlying the suppression of ß1 integrin activity by CD99 agonists and its relevance to tumor growth in vivo CD99-Fc fusion proteins or a series of CD99-derived peptides suppressed ß1 integrin activity by specifically interacting with three conserved motifs of the CD99 extracellular domain. CD99CRIII3, a representative CD99-derived 3-mer peptide, facilitated protein kinase A-SHP2 interaction and subsequent activation of the HRAS/RAF1/MEK/ERK signaling pathway. Subsequently, CD99CRIII3 induced FAK phosphorylation at S910, which led to the recruitment of PTPN12 and PIN1 to FAK, followed by FAK dephosphorylation at Y397. Taken together, these results indicate that CD99-derived agonist ligands inhibit fibronectin-mediated ß1 integrin activation through the SHP2/ERK/PTPN12/FAK signaling pathway.


Assuntos
Adesão Celular/fisiologia , Movimento Celular/fisiologia , Fibronectinas/metabolismo , Proteína-Tirosina Quinases de Adesão Focal/metabolismo , Cadeias beta de Integrinas/metabolismo , Transdução de Sinais , Antígeno 12E7/metabolismo , Linhagem Celular Tumoral , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Humanos , Ligantes , Fosforilação , Proteína Tirosina Fosfatase não Receptora Tipo 11/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 12/metabolismo , Transdução de Sinais/fisiologia
5.
Sensors (Basel) ; 10(1): 808-21, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-22315570

RESUMO

This study proposes a location-based hybrid routing protocol to improve data packet delivery and to reduce control message overhead in mobile ad hoc networks. In mobile environments, where nodes move continuously at a high speed, it is generally difficult to maintain and restore route paths. Therefore, this study suggests a new flooding mechanism to control route paths. The essence of the proposed scheme is its effective tracking of the destination's location based on the beacon messages of the main route nodes. Through experiments based on an NS-2 simulator, the proposed scheme shows improvements in the data packet delivery ratio and reduces the amount of routing control message overhead compared with existing routing protocols such as AODV, LAR, ZRP and AODV-DFR.


Assuntos
Telefone Celular , Redes de Comunicação de Computadores , Armazenamento e Recuperação da Informação/métodos , Manutenção/métodos , Processamento de Sinais Assistido por Computador
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA