Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Biosens Bioelectron ; 260: 116445, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38843771

RESUMO

Butterfly wings possess distinct micro/nanostructures that contribute to their vibrant coloration, light-trapping capabilities, and sensitivity to various stimuli. These complex features have inspired the creation of diverse devices and systems, such as sensors, photovoltaics, photocatalysis, and robotics. Specifically, the wing scales of the Emerald Swallowtail (Papilio palinurus) display iridescent, polarization-sensitive, and retroreflective colors due to their hierarchical structures. However, current technologies fail to mimic these natural designs fully, limiting their practical application in everyday life. In this study, we introduce a groundbreaking method for fabricating artificial wing scales that emulate the biological structure's functionality with a much simpler geometry. By integrating self-graded lossy media into metallic micro-concavity arrays, we achieve pronounced iridescent effects in both coaxial and non-coaxial arrangements, while preserving retroreflective properties. In particular, the simplified design allows for switchable color patterns based on the viewing angle. Demonstrating the concept, we successfully employ these conspicuous retroreflectors in hydrogen gas detection and the bi-directional/switchable recognition of patterned signals.

2.
Microsyst Nanoeng ; 10: 22, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38304019

RESUMO

Adaptive multicolor filters have emerged as key components for ensuring color accuracy and resolution in outdoor visual devices. However, the current state of this technology is still in its infancy and largely reliant on liquid crystal devices that require high voltage and bulky structural designs. Here, we present a multicolor nanofilter consisting of multilayered 'active' plasmonic nanocomposites, wherein metallic nanoparticles are embedded within a conductive polymer nanofilm. These nanocomposites are fabricated with a total thickness below 100 nm using a 'lithography-free' method at the wafer level, and they inherently exhibit three prominent optical modes, accompanying scattering phenomena that produce distinct dichroic reflection and transmission colors. Here, a pivotal achievement is that all these colors are electrically manipulated with an applied external voltage of less than 1 V with 3.5 s of switching speed, encompassing the entire visible spectrum. Furthermore, this electrically programmable multicolor function enables the effective and dynamic modulation of the color temperature of white light across the warm-to-cool spectrum (3250 K-6250 K). This transformative capability is exceptionally valuable for enhancing the performance of outdoor optical devices that are independent of factors such as the sun's elevation and prevailing weather conditions.

3.
Adv Mater ; 36(15): e2310556, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38174820

RESUMO

Reconfigurable optical devices hold great promise for advancing high-density optical interconnects, photonic switching, and memory applications. While many optical modulators based on active materials have been demonstrated, it is challenging to achieve a high modulation depth with a low operation voltage in the near-infrared (NIR) range, which is a highly sought-after wavelength window for free-space communication and imaging applications. Here, electrically switchable Tamm plasmon coupled with poly(3,4-ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS) is introduced. The device allows for a high modulation depth across the entire NIR range by fully absorbing incident light even under epsilon near zero conditions. Optical modulation exceeding 88% is achieved using a CMOS-compatible voltage of ±1 V. This modulation is facilitated by precise electrical control of the charge carrier density through an electrochemical doping/dedoping process. Additionally, the potential applications of the device are extended for a non-volatile multi-memory state optical device, capable of rewritable optical memory storage and exhibiting long-term potentiation/depression properties with neuromorphic behavior.

5.
iScience ; 26(10): 107946, 2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37854690

RESUMO

Phase Change Materials (PCMs) have demonstrated tremendous potential as a platform for achieving diverse functionalities in active and reconfigurable micro-nanophotonic devices across the electromagnetic spectrum, ranging from terahertz to visible frequencies. This comprehensive roadmap reviews the material and device aspects of PCMs, and their diverse applications in active and reconfigurable micro-nanophotonic devices across the electromagnetic spectrum. It discusses various device configurations and optimization techniques, including deep learning-based metasurface design. The integration of PCMs with Photonic Integrated Circuits and advanced electric-driven PCMs are explored. PCMs hold great promise for multifunctional device development, including applications in non-volatile memory, optical data storage, photonics, energy harvesting, biomedical technology, neuromorphic computing, thermal management, and flexible electronics.

6.
Adv Sci (Weinh) ; 10(32): e2304310, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37691086

RESUMO

Fano resonance, known for its unique asymmetric line shape, has gained significant attention in photonics, particularly in sensing applications. However, it remains difficult to achieve controllable Fano parameters with a simple geometric structure. Here, a novel approach of using a thin-film optical Fano resonator with a porous layer to generate entire spectral shapes from quasi-Lorentzian to Lorentzian to Fano is proposed and experimentally demonstrated. The glancing angle deposition technique is utilized to create a polarization-dependent Fano resonator. By altering the linear polarization between s- and p-polarization, a switchable Fano device between quasi-Lorentz state and negative Fano state is demonstrated. This change in spectral shape is advantageous for detecting materials with a low-refractive index. A bio-particle sensing experiment is conducted that demonstrates an enhanced signal-to-noise ratio and prediction accuracy. Finally, the challenge of optimizing the film-based Fano resonator due to intricate interplay among numerous parameters, including layer thicknesses, porosity, and materials selection, is addressed. The inverse design tool is developed based on a multilayer perceptron model that allows fast computation for all ranges of Fano parameters. The method provides improved accuracy of the mean validation factor (MVF = 0.07, q-q') compared to the conventional exhaustive enumeration method (MVF = 0.37).

7.
Nanomaterials (Basel) ; 13(2)2023 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-36678071

RESUMO

Over the past few decades, advances in various nanophotonic structures to enhance light-matter interactions have opened numerous opportunities for biosensing applications. Beyond the successful development of label-free nanophotonic biosensors that utilize plasmon resonances in metals and Mie resonances in dielectrics, simpler structures are required to achieve improved sensor performance and multifunctionality, while enabling cost-effective fabrication. Here, we present a simple and effectual approach to colorimetric biosensing utilizing a trilayered Gires-Tournois (GT) resonator, which provides a sensitive slow-light effect in response to low refractive index (RI) substances and thus enables to distinguish low RI bioparticles from the background with spatially distinct color differences. For low RI sensitivity, by impedance matching based on the transmission line model, trilayer configuration enables the derivation of optimal designs to achieve the unity absorption condition in a low RI medium, which is difficult to obtain with the conventional GT configuration. Compared to conventional bilayered GT resonators, the trilayered GT resonator shows significant sensing performance with linear sensitivity in various situations with low RI substances. For extended applications, several proposed designs of trilayered GT resonators are presented in various material combinations by impedance matching using equivalent transmission line models. Further, comparing the color change of different substrates with low RI NPs using finite-difference time-domain (FDTD) simulations, the proposed GT structure shows surpassing colorimetric detection.

8.
iScience ; 26(1): 105780, 2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36590160

RESUMO

The increasing advances in thermal radiation regulators have attracted growing interest, particularly in infrared sources, thermal management, and camouflage. Despite many advances in dynamic thermal emitters with great controllability, sustained external energy is required to maintain the desired emission. In this study, we present a polarization-driven thermal emission regulator based on a two-way control: i) phase change and ii) polarization tuning. Based on a conventional, non-volatile phase change material, i.e., Ge2Sb2Te5 (GST), we newly introduce an anisotropic medium for facile emissivity regulation without heat energy consumption. A rigorous coupled-wave analysis method provides design guidelines for finding optimal structural parameters. We utilized a simple glancing angle deposition process which induces tilted self-aligned nanocolumns with anisotropic properties. The fabricated sample shows polarization-sensitive thermal regulation through thermal imaging spectroscopic measurement. Additionally, we manufactured a multispectral visibly/thermally camouflaged patch that identifies encrypted information at a specific polarization state for a proof-of-concept demonstration.

9.
Adv Sci (Weinh) ; 10(2): e2204469, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36373672

RESUMO

Humidity-responsive structural coloration is actively investigated to realize real-time humidity sensors for applications in smart farming, food storage, and healthcare management. Here, humidity-tunable nano pixels are investigated with a 700 nm resolution that demonstrates full standard RGB (sRGB) gamut coverage with a millisecond-response time. The color pixels are designed as Fabry-Pérot (F-P) etalons which consist of an aluminum mirror substrate, humidity-responsive polyvinyl alcohol (PVA) spacer, and a top layer of disordered silver nanoparticles (NPs). The measured volume change of the PVA reaches up to 62.5% when the relative humidity (RH) is manipulated from 20 to 90%. The disordered silver NP layer permits the penetration of water molecules into the PVA layer, enhancing the speed of absorption and swelling down to the millisecond level. Based on the real-time response of the hydrogel-based F-P etalons with a high-throughput 3D nanoimprint technique, a high-resolution multicolored color print that can have potential applications in display technologies and optical encryption, is demonstrated.


Assuntos
Nanopartículas Metálicas , Álcool de Polivinil , Álcool de Polivinil/química , Nanopartículas Metálicas/química , Umidade , Prata/química , Hidrogéis
10.
ACS Appl Mater Interfaces ; 14(39): 44753-44761, 2022 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-36075087

RESUMO

A facile approach for improving color purity is explored by the introduction of an angle-robust selective absorber (ARSA) into bottlebrush block copolymer (BBCP)-based one-dimensional (1D) photonic crystals (PCs). The BBCPs of poly[(3-(12-(cis-5-norbornene-exo-2,3-dicarboximido)dodecanoylamino)propyl POSS)-block-(norbornene-graft-styrene)], Px (x = 1-4), with ultrahigh molecular weights (Mn ∼ 2260 kDa) and low dispersities (D̵ ∼ 1.07) are synthesized by ring-opening metathesis polymerization. The 1D PCs of the lamellar structure are fabricated by self-assembly of the BBCP with different periodicities for full color-generation (blue, green, and red). The optically tailored substrate (i.e., ARSA) is used to modulate the spectral line shape with selective absorption in the near-infrared range. Optical simulation proposes the optimized 1D PC structures on the ARSA, and it provides the reproducibility of the predictable color. The simulated structures are well matched with the experimental results, verifying the enhancement of color saturation even at various incident angles (0-70°).

11.
ACS Appl Mater Interfaces ; 14(39): 44419-44428, 2022 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-36136998

RESUMO

Optical losses in photovoltaic (PV) systems cause nonradiative recombination or incomplete absorption of incident light, hindering the attainment of high energy conversion efficiency. The surface of the PV cells is encapsulated to not only protect the cell but also control the transmission properties of the incident light to promote maximum conversion. Despite many advances in elaborately designed photonic structures for light harvesting, the complicated process and sophisticated patterning highly diminish the cost-effectiveness and further limit the mass production on a large scale. Here, we propose a robust/comprehensive strategy based on the hybrid disordered photonic structure, implementing multifaceted light harvesting with an affordable/scalable fabrication method. The spatially segmented structures include (i) nanostructures in the active area for antireflection and (ii) microstructures in the inactive edge area for redirecting the incident light into the active area. A lithography-free hybrid disordered structure fabricated by the thermal dewetting method is a facile approach to create a large-area photonic structure with hyperuniformity over the entire area. Based on the experimentally realized nano-/microstructures, we designed a computational model and performed an analytical calculation to confirm the light behavior and performance enhancement. Particularly, the suggested structure is manufactured by the elastomeric stamps method, which is affordable and profitable for mass production. The produced hybrid structure integrated with the multijunction solar cell presented an improved efficiency from 28.0 to 29.6% by 1.06 times.

12.
iScience ; 25(8): 104727, 2022 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-35865136

RESUMO

The next frontier of photonics is evolving into reconfigurable platforms with tunable functions to realize the ubiquitous application. The dynamic control of optical properties of photonics is highly desirable for a plethora of applications, including optical communication, dynamic display, self-adaptive photonics, and multi-spectral camouflage. Recently, to meet the dynamic response over broad optical bands, optically active materials have been integrated with the diverse photonic platforms, typically in the dimension of micro/nanometer scales. Here, we review recent advances in tunable photonics with controlling optical properties from visible to terahertz (THz) spectral range. We propose guidelines for designing tunable photonics in conjunction with optically active materials, inherent in wavelength characteristics. In particular, we devote our review to their potential uses for five different applications: structural coloration, metasurface for flat optics, photonic memory, thermal radiation, and terahertz plasmonics. Finally, we conclude with an outlook on the challenges and prospects of tunable photonics.

13.
Nat Commun ; 13(1): 1946, 2022 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-35410337

RESUMO

Perovskite microcells have a great potential to be applied to diverse types of optoelectronic devices including light-emitting diodes, photodetectors, and solar cells. Although several perovskite fabrication methods have been researched, perovskite microcells without a significant efficiency drop during the patterning and fabrication process could not be developed yet. We herein report the fabrication of high-efficiency perovskite microcells using swelling-induced crack propagation and the application of the microcells to colored solar windows. The key procedure is a swelling-induced lift-off process that leads to patterned perovskite films with high-quality interfaces. Thus, a power conversion efficiency (PCE) of 20.1 % could be achieved with the perovskite microcell, which is nearly same as the PCE of our unpatterned perovskite photovoltaic device (PV). The semi-transparent PV based on microcells exhibited a light utilization efficiency of 4.67 and a color rendering index of 97.5 %. The metal-insulator-metal structure deposited on the semi-transparent PV enabled to fabricate solar windows with vivid colors and high color purity.

14.
Sci Adv ; 8(10): eabm8598, 2022 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-35275712

RESUMO

The development of real-time and sensitive humidity sensors is in great demand from smart home automation and modern public health. We hereby proposed an ultrafast and full-color colorimetric humidity sensor that consists of chitosan hydrogel sandwiched by a disordered metal nanoparticle layer and reflecting substrate. This hydrogel-based resonator changes its resonant frequency to external humidity conditions because the chitosan hydrogels are swollen under wet state and contracted under dry state. The response time of the sensor is ~104 faster than that of the conventional Fabry-Pérot design. The origins of fast gas permeation are membrane pores created by gaps between the metal nanoparticles. Such instantaneous and tunable response of a new hydrogel resonator is then exploited for colorimetric sensors, anti-counterfeiting applications, and high-resolution displays.

15.
Adv Mater ; 34(21): e2110003, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35338528

RESUMO

Bright-field imaging of nanoscale bioparticles is a challenging task for optical microscopy because the light-matter interactions of bioparticles are weak on conventional surfaces due to their low refractive index and small size. Alternatively, advanced imaging techniques, including near-field microscopy and phase microscopy, have enabled visualization and quantification of the bioparticles, but they require assistance of sophisticated/customized systems and post-processing with complex established algorithms. Here, a simple and fast immunoassay device, Gires-Tournois immunoassay platform (GTIP) is presented, which provides unique color dynamics in response to optical environment changes and thus enables the label-free bright-field imaging and facile quantification of bioparticles using conventional optical microscopy. Bioparticles on GTIP slow down the velocity of reflected light, leading to vivid color change according to the local particle density and maximizing chromatic contrast for high spatial distinguishability. The particle distribution and density on the surface of the resonator are readily analyzed through 2D raster-scanning-based chromaticity analysis. GTIP offers multiscale sensing capability for target analytes that possess different refractive indices and sizes.


Assuntos
Microscopia , Refratometria , Algoritmos , Imunoensaio , Nanotecnologia
16.
Adv Sci (Weinh) ; 7(18): 2000978, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32999838

RESUMO

Acclimatable colors in response to environmental stimuli, which are naturally endowed with some living things, can provide an opportunity for humans to recognize hazardous substances without taking empirical risks. Despite efforts to create artificial responsive colors, realistic applications in everyday life require an immediate/distinct colorimetric realization with wide chromatic selectivity. A dynamically responsive virus (M-13 phage)-based changeable coloring strategy is presented with a highly lossy resonant promoter (HLRP). An ultrathin M-13 phage layer for rapid response to external stimuli displays colorimetric behavior, even in its subtle swelling with strong resonances on HLRP, which is modeled using the complex effective refractive index. Optimal designs of HLRP for several material combinations allow selective chromatic responsivity from the corresponding wide color palette without modification of the dynamic responsive layer. As a practical demonstration, the spatially designed colorimetric indicator, which is insensitive/sensitive to external stimuli, provides an intuitive perception of environmental changes with hidden/revealed patterns. Furthermore, the proposed colorimetric sensor is tested by exposure to various volatile organic chemicals and endocrine disrupting chemicals for versatile detectability, and is fabricated in a wafer-scale sample for large-area scalability.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA