Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Adv Mater ; 35(32): e2301631, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37122113

RESUMO

Halide solid electrolytes have recently emerged as a promising option for cathode-compatible catholytes in solid-state batteries (SSBs), owing to their superior oxidation stability at high voltage and their interfacial stability. However, their day- to month-scale aging at the cathode interface has remained unexplored until now, while its elucidation is indispensable for practical deployment. Herein, the stability of halide solid electrolytes (e.g., Li3 InCl6 ) when used with conventional layered oxide cathodes during extended calendar aging is investigated. It is found that, contrary to their well-known oxidation stability, halide solid electrolytes can be vulnerable to reductive side reactions with oxide cathodes (e.g., LiNi0.8 Co0.1 Mn0.1 O2 ) in the long term. More importantly, the calendar aging at a low state of charge or as-fabricated state causes more significant degradation than at a high state of charge, in contrast to typical lithium-ion batteries, which are more susceptible to high-state-of-charge calendar aging. This unique characteristic of halide-based SSBs is related to the reduction propensity of metal ions in halide solid electrolytes and correlated to the formation of an interphase due to the reductive decomposition triggered by the oxide cathode in a lithiated state. This understanding of the long-term aging properties provides new guidelines for the development of cathode-compatible halide solid electrolytes.

2.
Nat Chem ; 14(6): 614-622, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35449218

RESUMO

Nickel-rich layered oxides are envisaged as key near-future cathode materials for high-energy lithium-ion batteries. However, their practical application has been hindered by their inferior cycle stability, which originates from chemo-mechanical failures. Here we probe the solid-state synthesis of LiNi0.6Co0.2Mn0.2O2 in real time to better understand the structural and/or morphological changes during phase evolution. Multi-length-scale observations-using aberration-corrected transmission electron microscopy, in situ heating transmission electron microscopy and in situ X-ray diffraction-reveal that the overall synthesis is governed by the kinetic competition between the intrinsic thermal decomposition of the precursor at the core and the topotactic lithiation near the interface, which results in spatially heterogeneous intermediates. The thermal decomposition leads to the formation of intergranular voids and intragranular nanopores that are detrimental to cycling stability. Furthermore, we demonstrate that promoting topotactic lithiation during synthesis can mitigate the generation of defective structures and effectively suppress the chemo-mechanical failures.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA