Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Mater Today Bio ; 26: 101016, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38516171

RESUMO

Bone damage is a complex orthopedic problem primarily caused by trauma, cancer, or bacterial infection of bone tissue. Clinical care management for bone damage remains a significant clinical challenge and there is a growing need for more advanced bone therapy options. Nanotechnology has been widely explored in the field of orthopedic therapy for the treatment of a severe bone disease. Among nanomaterials, gold nanoparticles (GNPs) along with other biomaterials are emerging as a new paradigm for treatment with excellent potential for bone tissue engineering and regenerative medicine applications. In recent years, a great deal of research has focused on demonstrating the potential for GNPs to provide for enhancement of osteogenesis, reduction of osteoclastogenesis/osteomyelitis, and treatment of bone cancer. This review details the latest understandings in regards to GNPs based therapeutic systems, mechanisms, and the applications of GNPs against various bone disorders. The present review aims to summarize i) the mechanisms of GNPs in bone tissue remodeling, ii) preparation methods of GNPs, and iii) functionalization of GNPs and its decoration on biomaterials as a delivery vehicle in a specific bone tissue engineering for future clinical application.

2.
Adv Mater ; 36(19): e2308377, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38353580

RESUMO

The removal of dying cells, or efferocytosis, is an indispensable part of resolving inflammation. However, the inflammatory microenvironment of the atherosclerotic plaque frequently affects the biology of both apoptotic cells and resident phagocytes, rendering efferocytosis dysfunctional. To overcome this problem, a chimeric antigen receptor (CAR) macrophage that can target and engulf phagocytosis-resistant apoptotic cells expressing CD47 is developed. In both normal and inflammatory circumstances, CAR macrophages exhibit activity equivalent to antibody blockage. The surface of CAR macrophages is modified with reactive oxygen species (ROS)-responsive therapeutic nanoparticles targeting the liver X receptor pathway to improve their cell effector activities. The combination of CAR and nanoparticle engineering activated lipid efflux pumps enhances cell debris clearance and reduces inflammation. It is further suggested that the undifferentiated CAR-Ms can transmigrate within a mico-fabricated vessel system. It is also shown that our CAR macrophage can act as a chimeric switch receptor (CSR) to withstand the immunosuppressive inflammatory environment. The developed platform has the potential to contribute to the advancement of next-generation cardiovascular disease therapies and further studies include in vivo experiments.


Assuntos
Receptores X do Fígado , Macrófagos , Nanopartículas , Fagocitose , Espécies Reativas de Oxigênio , Receptores de Antígenos Quiméricos , Transdução de Sinais , Nanopartículas/química , Macrófagos/metabolismo , Receptores X do Fígado/metabolismo , Animais , Receptores de Antígenos Quiméricos/metabolismo , Camundongos , Humanos , Espécies Reativas de Oxigênio/metabolismo , Antígeno CD47/metabolismo , Apoptose/efeitos dos fármacos , Eferocitose , Lipossomos
3.
Bioeng Transl Med ; 8(6): e10577, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38023703

RESUMO

We aimed to develop a biocompatible treatment to overcome the limitations of polymethyl methacrylate (PMMA) vertebroplasty for osteoporotic compression fracture patients. We synthesized an injectable hydrogel containing PMMA. Mesenchymal stem cell (MSC) spheroids were included in the injectable PMMA-doped gel (= PMMA-doped spheroid gel). In vitro, the osteogenic/anti-inflammatory effects of the embedded spheroids were investigated by the quantitative real-time polymerase chain reaction method. In vivo, we used ovariectomy (OVX)-induced osteoporotic rats with injured femurs to investigate the pain-relief effects. The OVX rats were divided into four groups according to the materials injected (non, PMMA, PMMA gel, and PMMA-spheroid gel) into the lesion. The immunofluorescence (IF) intensity levels of painful markers in dorsal root ganglia (DRG) were measured. In vitro, a volumetric ratio of the gel of 8 (gel):2 (PMMA) was non-cytotoxic for MSCs and promoted the expression of osteogenic/anti-inflammatory markers. In vivo, the values of several bone parameters in the PMMA-doped spheroid gel group showed remarkable increases compared to those in the PMMA group. In addition, the IF intensity levels of the painful markers were noticeably decreased in the PMMA-spheroid gel group. We, therefore, suggest that this treatment can be useful for osteoporotic vertebral compression fracture patients.

4.
Biomater Res ; 27(1): 101, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37840145

RESUMO

BACKGROUND: Neural stem cells (NSCs) derived from the embryonic spinal cord are excellent candidates for the cellular regeneration of lost neural cells after spinal cord injury (SCI). Semaphorin 3 A (Sema3A) is well known as being implicated in the major axon guidance of the growth cone as a repulsive function during the development of the central nervous system, yet its function in NSC transplantation therapy for SCI has not been investigated. Here, we report for the first time that embryonic spinal cord-derived NSCs significantly express Sema3A in the SCI environment, potentially facilitating inhibition of cell proliferation after transplantation. METHODS: siRNA-Sema3A was conjugated with poly-l-lysin-coated gold nanoparticles (AuNPs) through a charge interaction process. NSCs were isolated from embryonic spinal cords of rats. Then, the cells were embedded into a dual-degradable hydrogel with the siRNA- Sema3A loaded-AuNPs and transplanted after complete SCI in rats. RESULTS: The knockdown of Sema3A by delivering siRNA nanoparticles via dual-degradable hydrogels led to a significant increase in cell survival and neuronal differentiation of the transplanted NSCs after SCI. Of note, the knockdown of Sema3A increased the synaptic connectivity of transplanted NSC in the injured spinal cord. Moreover, extracellular matrix molecule and functional recovery were significantly improved in Sema3A-inhibited rats compared to those in rats with only NSCs transplanted. CONCLUSIONS: These findings demonstrate the important role of Sema3A in NSC transplantation therapy, which may be considered as a future cell transplantation therapy for SCI cases.

5.
Int J Mol Sci ; 24(19)2023 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-37834036

RESUMO

The purpose of this study was to investigate the anti-inflammatory effect of tegoprazan (TEGO) in lipopolysaccharide (LPS)-stimulated bone-marrow-derived macrophages (BMMs). To this end, compared to methylprednisolone (MP; positive control), we evaluated whether TEGO effectively differentiates LPS-stimulated BMMs into M2-phenotype macrophages. Moreover, the expression of pro- and anti-inflammatory cytokines genes influenced by TEGO was measured using quantitative real-time polymerase chain reaction (qRT-PCR) analysis. TEGO was found to reduce nitric oxide (NO) production in BMMs significantly. In addition, TEGO significantly decreased and increased the gene expression levels of pro-inflammatory and anti-inflammatory cytokines, respectively. In addition, we evaluated the phosphorylated values of the extracellular signal-regulatory kinase (ERK) and p38 in the mitogen-activated protein (MAP) kinase signaling pathway through Western blotting. TEGO significantly reduced the phosphorylated values of the ERK and p38. In other words, TEGO suppressed the various pro-inflammatory responses in LPS-induced BMMs. These results show that TEGO has the potential to be used as an anti-inflammatory agent.


Assuntos
Medula Óssea , Lipopolissacarídeos , Humanos , Lipopolissacarídeos/farmacologia , Lipopolissacarídeos/metabolismo , Medula Óssea/metabolismo , Macrófagos/metabolismo , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/metabolismo , Citocinas/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , NF-kappa B/metabolismo , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Inflamação/metabolismo
6.
Bioeng Transl Med ; 7(3): e10326, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36176600

RESUMO

In this study, we aimed to investigate the recovery after traumatic spinal cord injury (SCI) by inducing cellular differentiation of transplanted neural stem cells (NSCs) into neurons. We dissociated NSCs from the spinal cords of Fisher 344 rat embryos. An injectable gel crosslinked with glycol chitosan and oxidized hyaluronate was used as a vehicle for NSC transplantation. The gel graft containing the NSC and positively charged gold nanoparticles (pGNP) was implanted into spinal cord lesions in Sprague-Dawley rats (NSC-pGNP gel group). Cellular differentiation of grafted NSCs into neurons (stained with ß-tubulin III [also called Tuj1]) was significantly increased in the NSC-pGNP gel group (***p < 0.001) compared to those of two control groups (NSC and NSC gel groups) in the SCI conditions. The NSC-pGNP gel group showed the lowest differentiation into astrocytes (stained with glial fibrillary acidic protein). Regeneration of damaged axons (stained with biotinylated dextran amines) within the lesion was two-fold higher in the NSC-pGNP gel group than that in the NSC gel group. The highest locomotor scores were also found in the NSC-pGNP gel group. These outcomes suggest that neuron-inducing pGNP gel graft embedding embryonic spinal cord-derived NSCs can be a useful type of stem cell therapy after SCI.

8.
ACS Omega ; 6(42): 28307-28315, 2021 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-34723027

RESUMO

Despite advances in the bio-tissue engineering area, the technical basis to directly load hydrophobic drugs on chitosan (CTS) electrospun nanofibers (ENs) has not yet been fully established. In this study, we fabricated CTS ENs by using an electrospinning (ELSP) system, followed by surface modification using succinyl-beta-cyclodextrin (ß-CD) under mild conditions. The ß-CD-modified CTS (ßCTS) ENs had slightly increased hydrophobicity compared to pristine CTS ENs as well as decreased residual amine content on the surface. Through FTIR spectroscopy and thermogravimetric analysis (TGA), we characterized the surface treatment physiochemically. In the drug release test, we demonstrated the stable and sustained release of a hydrophobic drug (e.g., dexamethasone) loaded on ß-CD ENs. During in vitro biocompatibility assessments, the grafting of ß-CD was shown to not reduce cell viability compared to pristine CTS ENs. Additionally, cells proliferated well on ß-CD ENs, and this was confirmed by F-actin fluorescence staining. Overall, the material and strategies developed in this study have the potential to load a wide array of hydrophobic drugs. This could be applied as a drug carrier for a broad range of tissue engineering applications.

9.
Biomedicines ; 9(10)2021 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-34680549

RESUMO

The purpose of this study is to elucidate the anti-inflammatory effect of lobeglitazone (LOBE) in lipopolysaccharide (LPS)-induced bone-marrow derived macrophages (BMDMs). We induced nitric oxide (NO) production and pro-inflammatory gene expression through LPS treatment in BMDMs. The changes of NO release and expression of pro-inflammatory mediators by LOBE were assessed via NO quantification assay and a real-time quantitative polymerase chain reaction (RT-qPCR), respectively. In addition, the regulatory effect of LOBE on activation of mitogen-activated protein kinase (MAPK) signaling pathway was investigated by measuring the phosphorylation state of extracellular regulatory protein (ERK) and c-Jun N-terminal kinase (JNK) proteins by Western blot. Our results show that LOBE significantly reduced LPS-induced NO production and pro-inflammatory gene expression of interleukin-1ß (IL-1ß), IL-6, inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), and monocyte chemoattractant protein-1 (MCP-1). Moreover, LOBE reduced phosphorylation levels of ERK and JNK of MAPK signaling pathway. In conclusion, LOBE exerts an anti-inflammatory effect in LPS-induced BMDMs by suppression of NO production and pro-inflammatory gene expression, and this effect is potentially through inhibition of the MARK signaling pathway.

10.
Pharmaceuticals (Basel) ; 14(8)2021 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-34451889

RESUMO

Neuroinflammation forms a glial scar following a spinal cord injury (SCI). The injured axon cannot regenerate across the scar, suggesting permanent paraplegia. Molecular chirality can show an entirely different bio-function by means of chiral-specific interaction. In this study, we report that d-chiral glutathione (D-GSH) suppresses the inflammatory response after SCI and leads to axon regeneration of the injured spinal cord to a greater extent than l-chiral glutathione (L-GSH). After SCI, axon regrowth in D-GSH-treated rats was significantly increased compared with that in L-GSH-treated rats (*** p < 0.001). Secondary damage and motor function were significantly improved in D-GSH-treated rats compared with those outcomes in L-GSH-treated rats (** p < 0.01). Moreover, D-GSH significantly decreased pro-inflammatory cytokines and glial fibrillary acidic protein (GFAP) via inhibition of the mitogen-activated protein kinase (MAPK) signaling pathway compared with L-GSH (*** p < 0.001). In primary cultured macrophages, we found that D-GSH undergoes more intracellular interaction with activated macrophages than L-GSH (*** p < 0.001). These findings reveal a potential new regenerative function of chiral GSH in SCI and suggest that chiral GSH has therapeutic potential as a treatment of other diseases.

11.
Biomacromolecules ; 22(7): 2887-2901, 2021 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-34097404

RESUMO

In this study, we created a hydrogel composed of glycol chitosan (gC) and oxidized hyaluronate (oHA). Gold nanoparticles (GNPs) were conjugated with ursodeoxycholic acid (UDCA). The GNP-UDCA complex was embedded into gC-oHA (CHA) hydrogels to form a CHA-GNP-UDCA gel. This CHA-GNP-UDCA gel was injected once into an epicenter of an injured region in SCI rats. Near-infrared (NIR) irradiation was then applied to the lesion as a means of local therapy. To optimize the viscosity for injection into a lesion, several volume ratios of gC and oHA were investigated using scanning electron microscopy and a rotating rheometer. The optimally synthesized CHA-GNP-UDCA gel under NIR irradiation suppressed the production of inflammatory cytokines in vitro. In addition, the optimized CHA-GNP-UDCA gel under NIR irradiation inhibited the cystic cavity of the lesion and significantly improved the hindlimb function. The production of inflammatory cytokines following SCI was significantly inhibited in the CHA-GNP-UDCA gel + NIR group. CHA-GNP-UDCA gels with NIR irradiation can therefore have therapeutic effects for those with spinal cord injuries.


Assuntos
Nanopartículas Metálicas , Traumatismos da Medula Espinal , Animais , Ouro , Hidrogéis/uso terapêutico , Injeções , Ratos , Medula Espinal , Traumatismos da Medula Espinal/tratamento farmacológico
12.
Cell Prolif ; 54(6): e13050, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33960559

RESUMO

OBJECTIVES: In this study, we study the transplantation of tauroursodeoxycholic acid (TUDCA)-induced M2-phenotype (M2) macrophages and their ability to promote anti-neuroinflammatory effects and functional recovery in a spinal cord injury (SCI) model. METHODS: To this end, compared to the granulocyte-macrophage colony-stimulating factor (GM-CSF), we evaluated whether TUDCA effectively differentiates bone marrow-derived macrophages (BMDMs) into M2 macrophages. RESULTS: The M2 expression markers in the TUDCA-treated BMDM group were increased more than those in the GM-CSF-treated BMDM group. After the SCI and transplantation steps, pro-inflammatory cytokine levels and the mitogen-activated protein kinase (MAPK) pathway were significantly decreased in the TUDCA-induced M2 group more than they were in the GM-CSF-induced M1 group and in the TUDCA group. Moreover, the TUDCA-induced M2 group showed significantly enhanced tissue volumes and improved motor functions compared to the GM-CSF-induced M1 group and the TUDCA group. In addition, biotinylated dextran amine (BDA)-labelled corticospinal tract (CST) axons and neuronal nuclei marker (NeuN) levels were increased in the TUDCA-induced M2 group more than those in the GM-CSF-induced M1 group and the TUDCA group. CONCLUSIONS: This study demonstrates that the transplantation of TUDCA-induced M2 macrophages promotes an anti-neuroinflammatory effect and motor function recovery in SCI. Therefore, we suggest that the transplantation of TUDCA-induced M2 macrophages represents a possible alternative cell therapy for SCI.


Assuntos
Macrófagos/transplante , Traumatismos da Medula Espinal/terapia , Ácido Tauroquenodesoxicólico/metabolismo , Animais , Células Cultivadas , Feminino , Inflamação/metabolismo , Inflamação/fisiopatologia , Inflamação/terapia , Macrófagos/metabolismo , Ratos , Ratos Sprague-Dawley , Recuperação de Função Fisiológica , Traumatismos da Medula Espinal/metabolismo , Traumatismos da Medula Espinal/fisiopatologia
13.
Pharmaceutics ; 13(4)2021 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-33805431

RESUMO

Gold nanoparticles (GNPs) have been widely studied to inhibit differentiation into osteoclasts. However, reports of the inhibitory effects of silver nanoparticles (SNPs) during the process of differentiation into osteoclasts are rare. We compared the inhibitory effect of GNPs and SNPs during the process of differentiation into osteoclasts. Bone marrow-derived cells were differentiated into osteoclasts by the receptor activator of the nuclear factor-kappa-Β ligand (RANKL). The inhibitory effect of GNPs or SNPs during the process of differentiation into osteoclasts was investigated using tartrate-resistant acid phosphatase (TRAP) and actin ring staining. The formation of TRAP positive (+) multinuclear cells (MNCs) with the actin ring structure was most inhibited in the SNP group. In addition, the expression of specific genes related to the differentiation into osteoclasts, such as c-Fos, the nuclear factor of activated T-cells, cytoplasmic 1 (NFATc1), TRAP, and Cathepsin K (CTSK) were also inhibited in the SNP groups. As a result, the levels related to differentiation into osteoclasts were consistently lower in the SNP groups than in the GNP groups. Our study suggests that SNPs can be a useful material for inhibiting differentiation into osteoclasts and they can be applied to treatments for osteoporosis patients.

14.
Mol Neurobiol ; 57(10): 4007-4017, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32647974

RESUMO

We investigate the anti-inflammatory effects of injectable hydrogel containing tauroursodeoxycholic acid (TUDCA) in a spinal cord injury (SCI) model. To this end, TUDCA-hydrogel (TC gel) is created by immersing the synthesized hydrogel in a TUDCA solution for 1 h. A mechanical SCI was imposed on rats, after which we injected the TC gel. After the SCI and injections, motor functions and lesions were significantly improved in the TC gel group compared with those in the saline group. The TC gel significantly decreased pro-inflammatory cytokine levels compared with the saline; TUDCA and glycol chitosan-oxidized hyaluronate were mixed at a ratio of 9:1 (CHA) gel independently. In addition, the TC gel significantly suppressed the phosphorylation of extracellular signal-regulated kinase (p-ERK) and c-Jun N-terminal kinase (p-JNK) in the mitogen-activated protein kinase (MAPK) pathway compared with the saline, TUDCA, and CHA gel independently. It also decreased tumor necrosis factor-α (TNF-α) and glial fibrillary acidic protein (GFAP), inflammatory marker, at the injured sites more than those in the saline, TUDCA, and CHA gel groups. In conclusion, the results of this study demonstrate the neuroinflammatory inhibition effects of TC gel in SCI and suggest that TC gel can be an alternative drug system for SCI cases.


Assuntos
Anti-Inflamatórios/uso terapêutico , Hidrogéis/química , Injeções , Traumatismos da Medula Espinal/tratamento farmacológico , Ácido Tauroquenodesoxicólico/uso terapêutico , Animais , Anti-Inflamatórios/farmacologia , Apoptose/efeitos dos fármacos , Comportamento Animal , Quitosana/química , Citocinas/metabolismo , Proteína Glial Fibrilar Ácida/metabolismo , Ácido Hialurônico/química , Mediadores da Inflamação/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Atividade Motora/efeitos dos fármacos , Neuraminidase/metabolismo , Fosforilação/efeitos dos fármacos , Ratos Sprague-Dawley , Recuperação de Função Fisiológica/efeitos dos fármacos , Traumatismos da Medula Espinal/enzimologia , Traumatismos da Medula Espinal/fisiopatologia , Ácido Tauroquenodesoxicólico/farmacologia , Fator de Necrose Tumoral alfa/metabolismo
15.
Nanomedicine ; 24: 102129, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31760162

RESUMO

Osseointegration is important in osteopenia and osteoporosis patients due to their low bone densities. Gold nanoparticles (GNPs) are greatly beneficial materials as osteogenic agents. The aim of this study is to investigate osseointegration between bones and double layers of GNP-immobilized titanium (Ti) implants. The physicochemical properties of the Ti surface were evaluated by scanning electron microscopy, by atomic force microscopy, by means of the contact angle using water drops, and by x-ray photoelectron spectroscopy. Osteogenic differentiation of human bone-marrow-derived mesenchymal stem cells was analyzed and showed the higher values in double layers of GNP (GNP2) groups. In addition, we performed an in vivo study using hydroxyapatite (HA) and GNP2 spine pedicle screws in ovariectomized (OVX) and SHAM rabbits. Osseointegration parameters also showed higher values in GNP2 than in HA groups. These findings suggest that implants with double layers of GNPs can be a useful alternative in osteoporotic patients.


Assuntos
Durapatita/química , Ouro/química , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Nanopartículas Metálicas/química , Osseointegração/efeitos dos fármacos , Titânio/química , Titânio/farmacologia , Fosfatase Alcalina/metabolismo , Animais , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/fisiologia , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/fisiologia , Humanos , Células-Tronco Mesenquimais/efeitos dos fármacos , Nanopartículas Metálicas/ultraestrutura , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Coelhos , Reação em Cadeia da Polimerase Via Transcriptase Reversa
16.
Mol Neurobiol ; 56(1): 267-277, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29691718

RESUMO

The aim of this study was to investigate the anti-inflammatory effects by ursodeoxycholic acid (UDCA) in rats with a spinal cord injury (SCI). A moderate mechanical compression injury was imposed on adult Sprague-Dawley (SD) rats. The post-injury locomotor functions were assessed using the Basso, Beattie, and Bresnahan (BBB) locomotor scale and the tissue volume of the injured region was analyzed using hematoxylin and eosin staining. The pro-inflammatory factors were evaluated by immunofluorescence (IF) staining, a quantitative real-time polymerase chain reaction (qRT-PCR), and enzyme-linked immunosorbent assay (ELISA). The phosphorylation of the extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK), and p38 in mitogen-activated protein kinase (MAPK) signaling pathways related to inflammatory responses were measured by Western blot assays. UDCA improved the BBB scores and promoted the recovery of the spinal cord lesions. UDCA inhibited the expression of glial fibrillary acidic protein (GFAP), tumor necrosis factor-α (TNF-α), ionized calcium-binding adapter molecule 1 (iba1), and inducible nitric oxide synthase (iNOS). UDCA decreased the pro-inflammatory cytokines of TNF-α, interleukin 1-ß (IL-1ß), and interleukin 6 (IL-6) in the mRNA and protein levels. UDCA increased the anti-inflammatory cytokine interleukin 10 (IL-10) in the mRNA and protein levels. UDCA suppressed the phosphorylation of ERK, JNK, and the p38 signals. UDCA reduces pro-inflammatory responses and promotes functional recovery in SCI in rats. These results suggest that UDCA is a potential therapeutic drug for SCI.


Assuntos
Inflamação/tratamento farmacológico , Recuperação de Função Fisiológica , Traumatismos da Medula Espinal/tratamento farmacológico , Traumatismos da Medula Espinal/fisiopatologia , Ácido Ursodesoxicólico/uso terapêutico , Animais , Proteínas de Ligação ao Cálcio/metabolismo , Citocinas/genética , Citocinas/metabolismo , Feminino , Proteína Glial Fibrilar Ácida/metabolismo , Inflamação/patologia , Mediadores da Inflamação/metabolismo , Sistema de Sinalização das MAP Quinases , Proteínas dos Microfilamentos/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Fosforilação , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos Sprague-Dawley , Recuperação de Função Fisiológica/efeitos dos fármacos , Traumatismos da Medula Espinal/patologia , Fator de Necrose Tumoral alfa/metabolismo , Ácido Ursodesoxicólico/farmacologia
17.
Int J Nanomedicine ; 13: 7019-7031, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30464456

RESUMO

BACKGROUND: For effective bone regeneration, it is necessary to implant a biocompatible scaffold that is capable of inducing cell growth and continuous osteogenic stimulation at the defected site. Here, we suggest an injectable hydrogel system using enzymatic cross-linkable gelatin (Gel) and functionalized gold nanoparticles (GNPs). METHODS: In this work, tyramine (Ty) was synthesized on the gelatin backbone (Gel-Ty) to enable a phenol crosslinking reaction with horseradish peroxidase (HRP). N-acetyl cysteine (NAC) was attached to the GNPs surface (G-NAC) for promoting osteodifferentiation. RESULTS: The Gel-Ty hydrogels containing G-NAC (Gel-Ty/G-NAC) had suitable mechanical strength and biocompatibility to embed and support the growth of human adipose derived stem cells (hASCs) during a proliferation test for three days. In addition, G-NAC promoted osteodifferentiation both when it was included in Gel-Ty and when it was used directly in hASCs. The osteogenic effects were demonstrated by the alkaline phosphatase (ALP) activity test. CONCLUSION: These findings indicate that the phenol crosslinking reaction is suitable for injectable hydrogels for tissue regeneration and G-NAC stimulate bone regeneration. Based on our results, we suggest that Gel-Ty/G-NAC hydrogels can serve both as a biodegradable graft material for bone defect treatment and as a good template for tissue engineering applications such as drug delivery, cell delivery, and various tissue regeneration uses.


Assuntos
Regeneração Óssea/efeitos dos fármacos , Osso e Ossos/fisiologia , Ouro/química , Hidrogéis/farmacologia , Injeções , Nanopartículas Metálicas/química , Acetilcisteína/farmacologia , Tecido Adiposo/citologia , Fosfatase Alcalina/metabolismo , Osso e Ossos/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Gelatina/química , Humanos , Osteogênese/efeitos dos fármacos , Células-Tronco/citologia , Células-Tronco/efeitos dos fármacos , Células-Tronco/metabolismo
19.
Front Pharmacol ; 9: 445, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29867457

RESUMO

α-asarone, a bioactive compound found in Acorus plant species, has been shown to exhibit neuroprotective, anti-oxidative, anti-inflammatory, and cognitive-enhancing effects. However, the effects of α-asarone on spinal cord injury (SCI) have not yet been elucidated. The present study investigated the effects of α-asarone on the mRNA of pro-inflammatory cytokines, macrophage polarization toward an anti-inflammatory M2 phenotype, and angiogenesis in rats with compressive SCI. α-Asarone was orally administered (10 mg/kg) once per day for 14 days following moderate static compression SCI. Compared to controls, α-asarone treatment significantly improved locomotor score, prevented neuroinflammation, and facilitated angiogenesis in the spinal cord at 14 days after SCI. Furthermore, α-asarone significantly reduced the TNF-α, IL-1ß, IL-6, monocyte chemoattractant protein 1 (MCP-1), macrophage inflammatory protein 2 (MIP-2), and inducible nitric oxide synthase (iNOS) levels but increased the IL-4, IL-10, and arginase 1 levels at 24 h after SCI. At 7 and 14 days after SCI, immunohistochemistry showed reduced reactive gliosis and neuroinflammation and an increased expression of M2 macrophage markers and angiogenesis. The results suggest that the inhibition of pro-inflammatory cytokines, macrophage polarization toward an anti-inflammatory M2 phenotype, and angiogenesis by α-asarone may be some of the mechanisms underlying the α-asarone-mediated neuroprotective effects on an injured spinal cord.

20.
Sci Rep ; 8(1): 3176, 2018 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-29453346

RESUMO

This study aimed to investigate the anti-inflammatory effects of tauroursodeoxycholic acid (TUDCA) after spinal cord injury (SCI) in rats. We induced an inflammatory process in RAW 264.7 macrophages, BV2 microglial cells, and bone marrow-derived macrophages (BMM) using lipopolysaccharide (LPS). The anti-inflammatory effects of TUDCA on LPS-stimulated RAW 264.7 macrophages, BV2 microglial cells, and BMMs were analyzed using nitric oxide (NO) assays, quantitative real-time polymerase chain reactions (qRT-PCR), and enzyme-linked immunosorbent assays (ELISA). The pathological changes in lesions of the spinal cord tissue were evaluated by hematoxylin & eosin (H&E) staining, luxol fast blue/cresyl violet-staining and immunofluorescent staining. TUDCA decreased the LPS-stimulated inflammatory mediator, NO. It also suppressed pro-inflammatory cytokines of tumor necrosis factor-α (TNF-α), interleukin 1-ß (IL-1ß), cyclooxygenase-2 (COX-2), and inducible nitric oxide synthase (iNOS) in both mRNA and protein levels. In addition, TUDCA decreased prostaglandin E2 (PGE2). After SCI, TUDCA supported the recovery of the injury site and suppressed the expression of inflammatory cytokines such as iNOS, CD68 and CD86. In addition, TUDCA induced the expression of anti-inflammatory cytokine, Arg-1. In conclusion, TUDCA inhibits inflammatory responses in RAW 264.7 macrophages, BV2 microglial cells, and BMMs. TUDCA can be a potential alternative drug for SCI.


Assuntos
Anti-Inflamatórios/farmacologia , Células da Medula Óssea/citologia , Macrófagos/efeitos dos fármacos , Microglia/efeitos dos fármacos , Traumatismos da Medula Espinal/tratamento farmacológico , Ácido Tauroquenodesoxicólico/farmacologia , Animais , Citocinas/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Macrófagos/citologia , Macrófagos/metabolismo , Camundongos , Microglia/metabolismo , Células RAW 264.7 , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos Sprague-Dawley , Ácido Tauroquenodesoxicólico/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA