RESUMO
Per- and polyfluoroalkyl substances (PFAS) are a class of toxic manufactured chemicals in commercial and consumer products. They are resistant to environmental degradation and mobile in soil, air, and water. This study used the introduced bivalve Corbicula fluminea as a passive biomonitor at sampling locations in a primary drinking water source in Virginia, USA. Many potential PFAS sources were identified in the region. Perfluorohexane sulfonate (PFHxS) and 6:2 fluorotelomer sulfonic acid (6:2 FTS) levels were highest downstream of an airport. The highest levels of short-chain carboxylic acids were in locations downstream of a wastewater treatment plant. Measured PFAS concentrations varied by location in C. fluminea, sediment, and surface water samples. Two compounds were detected across all three mediums. Calculated partitioning coefficients confirm bioaccumulation of PFAS in C. fluminea and sorption to sediment. C. fluminea bioaccumulated two PFAS not found in the other mediums. Perfluoroalkyl carboxylic acids and short-chain compounds dominated in clam tissue, which contrasts with findings of accumulation of longer-chain and perfluorosulfonic acids in fish. These findings suggest the potential for using bivalves to complement other organisms to better understand the bioaccumulation of PFAS and their fate and transport in a freshwater ecosystem.
Assuntos
Corbicula , Fluorocarbonos , Poluentes Químicos da Água , Animais , Poluentes Químicos da Água/análise , Fluorocarbonos/análise , Corbicula/metabolismo , Corbicula/química , Monitoramento Ambiental/métodos , Sedimentos Geológicos/química , Sedimentos Geológicos/análise , Monitoramento Biológico , VirginiaRESUMO
Considered contaminants of emerging concern, per- and polyfluoroalkyl substances (PFAS) are a class of toxic, manufactured chemicals found in commercial and consumer products such as nonstick cookware, food packaging, and firefighting foams. Human exposure to PFAS through inhalation and ingestion can cause a variety of harmful effects and negative health outcomes. Per- and polyfluoroalkyl substances possess high polarity and chemical stability, enabling them to resist degradation in most environmental conditions. These characteristics allow PFAS to be mobile in soil, air, and water, and bioaccumulate in living organisms. Due to their thermally resistant chemical properties, PFAS are used as binders in polymer-bonded explosives (PBX) and in various components of munitions. Thus, when munitions are detonated, PFAS are released into the environment as aerosols and can deposit in the soil, surface water, or biota. Air emission modeling suggests that ground-level and airborne detonation of munitions can increase PFAS deposition both locally and long range. Further, if industrial facilities with PFAS are damaged or destroyed, there is greater potential for environmental degradation from increased release of PFAS into the environment. As a consequence of their persistent nature, PFAS can remain in an environment long after armed conflict, indirectly affecting ecosystems, food sources, and human health. The toxic contamination from munitions could present a greater hazard to a larger population over time than acute detonation events. This article discusses methods for estimating war-related damage from PFAS by exploring predictive modeling approaches and postwar ground validation techniques. Integr Environ Assess Manag 2023;19:376-381. © 2022 The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals LLC on behalf of Society of Environmental Toxicology & Chemistry (SETAC).