Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Curr Res Food Sci ; 8: 100680, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38328465

RESUMO

Continuous fruit waste poses significant environmental and economic challenges, necessitating innovative fruit coating technologies. This research focuses on harnessing discarded orange peels to extract essential oil (OPEO), which is then integrated into a chitosan/aloe vera (CTS/AVG) matrix. The study comprehensively characterised the coating in terms of its physicochemical properties, antioxidant capacity, and antimicrobial efficacy. The investigation involved an analysis of particle size and distribution in the coating solutions, highlighting changes induced by the incorporation of orange peel essential oil (1 %, 2 % and 3 % v/w) into the chitosan/aloe vera (4:1 v/v) matrix, including particle size reduction and enhanced Brownian motion. The study quantifies a 33.21 % decrease in water vapour transmission rate and a reduction in diffusion coefficient from 9.26 × 10-11 m2/s to 6.20 × 10-11 m2/s following the addition of OPEO to CTS/AVG. Assessment of antioxidant potential employing DPPH radical scavenging assays, revealed that CTS/AVG/3 %OPEO exhibited notably superior radical scavenging activity compared to CTS/AVG, CTS/AVG/1 %OPEO, and CTS/AVG/2 %OPEO, demonstrated by its IC50 value of 17.01 ± 0.45 mg/mL. The study employs the well diffusion method, demonstrating a higher susceptibility of gram-negative bacteria to the coating solutions than gram-positive counterparts. Remarkably, CTS/AVG/3 %OPEO displayed the most pronounced inhibition against Escherichia coli, generating an inhibitory zone diameter of 14 ± 0.8 mm. The results collectively emphasised the potential of CTS/AVG/3 %OPEO as a viable natural alternative to synthetic preservatives within the fruit industry, attributed to its exceptional antioxidant and antimicrobial properties.

2.
Foods ; 12(7)2023 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-37048378

RESUMO

The increasing prevalence of gluten-related disorders has led to higher consumer demand for convenient, gluten-free bakery products with health-promoting properties. In this study, non-gluten shortbread cookies were incorporated with various kinds of spent (green, oolong, and black) tea leaves powder (STLP) at 8% w/w. Cookies with STLP had significantly higher (p < 0.05) moisture (2.18-2.35%), crude fibre (14.5-14.9%), total dietary fibre (22.38-22.59%), insoluble dietary fibre (15.32-15.83%), soluble dietary fibre (7.06-7.66%), and ash (1.9-2.0%) contents, but were significantly lower (p < 0.05) in carbohydrate (53.2-53.9%) and energy value (426.4-428.2 kcal) compared to control cookies (1.62%; 1.43%; 6.82%; 4.15%; 2.67%; 7.70%; 62.2%; and 457.8 kcal, respectively). The addition of STLP significantly enhanced (p < 0.05) the antioxidant properties of the cookies. Non-gluten shortbread cookies with spent green tea leaves powder (GTC) received the highest (p < 0.05) score for all sensory attributes, including overall acceptability. In addition, the shelf-life quality of the formulated cookie samples in terms of the moisture content, water activity, colour, texture, microbiology, and sensory properties was maintained (p > 0.05) for at least 22 days at 25 °C. STLP, which would have been previously thrown away, could be utilized as a potential functional ingredient to produce non-gluten shortbread cookies with enhanced nutritional, physicochemical, microbiological, sensory, and antioxidative properties.

3.
Foods ; 12(1)2023 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-36613430

RESUMO

Hypertension is the leading cause of cardiovascular disease and premature death worldwide. Gamma-aminobutyric acid (GABA) has potential in regulating hypertension. Cocoa beans are rich in GABA, but GABA is being destroyed during roasting of cocoa beans and chocolate production. This study aimed to develop GABA-enriched dark chocolate by partially replacing sugar syrup with pure GABA powder at concentrations of 0.05 (F1), 0.10 (F2), and 0.15% (F3). The chocolate samples were incorporated with GABA after the heating and melting process of cocoa butter to maintain the viability and functionality of the GABA in the final product. The effects of GABA enrichment on the quality of chocolate in terms of nutritional, physical, shelf-life, and sensorial properties were studied. The inclusion of 0.15% GABA significantly increased the GABA content and angiotensin-converting-enzyme (ACE) inhibitory effect of chocolate. The nutritional compositions of the control and GABA-enriched chocolates were almost similar. The addition of GABA significantly increased the hardness but did not affect the apparent viscosity and melting properties of chocolate. Accelerated shelf-life test results showed that all the chocolates stored at 20 and 30 °C were microbiologically safe for consumption for at least 21 days. Among the GABA-enriched chocolates, panellists preferred F2 the most followed by F3 and F1, owing to the glossiness and sweetness of F2. F3 with the highest GABA content (21.09 mg/100 g) and ACE inhibitory effect (79.54%) was identified as the best GABA-enriched dark chocolate.

4.
Foods ; 11(21)2022 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-36359973

RESUMO

Nitrite is one of the most widely used curing ingredients in meat industries. Nitrites have numerous useful applications in cured meats and a vital component in giving cured meats their unique characteristics, such as their pink color and savory flavor. Nitrites are used to suppress the oxidation of lipid and protein in meat products and to limit the growth of pathogenic microorganisms such as Clostridium botulinum. Synthetic nitrite is frequently utilized for curing due to its low expenses and easier applications to meat. However, it is linked to the production of nitrosamines, which has raised several health concerns among consumers regarding its usage in meat products. Consumer desire for healthier meat products prepared with natural nitrite sources has increased due to a rising awareness regarding the application of synthetic nitrites. However, it is important to understand the various activities of nitrite in meat curing for developing novel substitutes of nitrites. This review emphasizes on the effects of nitrite usage in meat and highlights the role of nitrite in the production of carcinogenic nitrosamines as well as possible nitrite substitutes from natural resources explored also.

5.
Front Nutr ; 9: 966557, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36204384

RESUMO

This project was designed to explore the xanthine oxidase (XO) inhibitory mechanism of eight structurally diverse phenolic compounds [quercetin: C1, quercetin-3-rhamnoside: C2, 4, 5-O-dicaffeoylquinic acid: C3, 3, 5-O-dicaffeoylquinic acid: C4, 3, 4-O-di-caffeoylquinic acid: C5, 4-O-caffeoylquinic acid (C6), 3-O-caffeoylquinic acid: C7, and caffeic acid: C8]. For this purpose, in-vitro and different computational methods were applied to determine the xanthine oxidase (XO) inhibitory potential of eight structurally diverse phenolic compounds. The results revealed that phenolic compounds (C1-C8) possess strong to weak XO inhibitory activity. These results were further confirmed by atomic force microscopy (AFM) and 1H NMR analysis. Furthermore, computational study results revealed that phenolic compounds (C1-C8) bind with the surrounding amino acids of XO at the molybdenum (MO) site. These in-vitro and in-silico results divulge that phenolic compounds have a strong potential to lower uric acid levels via interacting with the XO enzyme and can be used to combat hyperuricemia.

6.
Foods ; 11(17)2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-36076854

RESUMO

Instant noodles are consumed worldwide, but instant noodles are often unhealthy. Therefore, in the current study, instant noodles were produced with composite flour (a blend of wheat flour and potato starch at weight ratios of 9:1, 8:2, and 7:3) incorporated with red seaweed powder (Eucheuma denticulatum) in proportions of 0, 5, 7.5, 10, 12.5, and 15%. The noodles' sensory, physicochemical, and cooking properties were then determined. The incorporation of 7.5−15% of seaweed powder significantly (p < 0.05) increased the cooking yield, reduced the cooking loss, lengthened the cooking time, and decreased the pH values and water activity. The addition of seaweed powder weakened the tensile strength and softened the noodles. Seaweed noodles were denser and greener than control noodles. Among the three seaweed noodles (F2, F5, and F12) selected through the ranking test, panelists preferred F2 and F5 (both scoring 4.63 on a 7-point hedonic scale for overall acceptability) more than F12. Overall, F5 (at a wheat flour: potato starch ratio of 9:1; 15% seaweed powder) is the best-formulated seaweed noodle in this study, owing to its highest cooking yield and lowest cooking loss even with prolonged cooking, lowest water activity, and acceptable sensory qualities.

7.
Polymers (Basel) ; 14(15)2022 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-35893973

RESUMO

This study employed response surface methodology to optimize the preparation of biocomposites based on whey protein isolate, glycerol, and nanocrystalline cellulose from pineapple crown leaf. The effects of different concentrations of nanocrystalline cellulose as a filler and glycerol as a plasticizer on the thickness, the tensile strength, and the elongation at break on the resulting biocomposite films were investigated. The central composite design was used to determine the optimum preparation conditions for biocomposite films with optimum properties. The regression of a second-order polynomial model resulted in an optimum composition consisting of 4% glycerol and 3.5% nanocrystalline cellulose concentrations, which showed a desirability of 92.7%. The prediction of the regression model was validated by characterizing the biocomposite film prepared based on the optimum composition, at which the thickness, tensile strength, and elongation at break of the biocomposite film were 0.13 mm, 7.16 MPa, and 39.10%, respectively. This optimum composition can be obtained in range concentrations of glycerol (4-8%) and nanocrystalline cellulose (3-7%). Scanning electron microscope images showed that nanocrystalline cellulose dispersed well in the pure whey protein isolate, and the films had a relatively smooth surface. In comparison, a rough and uneven surface results in more porous biocomposite films. Fourier transform infrared spectroscopy revealed that nanocrystalline cellulose and glycerol showed good compatibility with WPI film by forming hydrogen bonds. The addition of nanocrystalline cellulose as a filler also decreased the transparency, solubility, and water vapor permeability and increased the crystallinity index of the resulting biocomposite film.

8.
Microorganisms ; 10(7)2022 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-35889054

RESUMO

There is a rising concern about illnesses resulting from milk consumption due to contamination by pathogenic microorganisms including Escherichia coli. This study examined the occurrence and antimicrobial susceptibility of E. coli isolated from cow milk and related samples. Furthermore, partial sequencing was done to ascertain the genetic relatedness and possible cross contamination among the samples. In all, 250 samples, that is, 50 each of raw milk, cow teat, milkers' hands, milking utensils, and fecal matter of cows, were cultured for the identification of E. coli. E. coli was detected in 101/250 samples (40.4%). Milk and fecal samples recorded the highest percentages of 68.0% and 66.0%, respectively. Forty-two (42) E. coli strains examined for antimicrobial resistance showed an overall 25.5% resistance, 15.0% intermediate resistance, and 59.5% susceptibility. The isolates had a high level of resistance to teicoplanin (100.0%), but were susceptible to chloramphenicol (95.2%) and azithromycin (92.9%). The Multiple Antibiotic Resistance (MAR) index pattern ranged from 0.1 to 0.5, and 40.5% exhibited multiple drug resistance. The E. coli strains formed 11 haplotypes, and a phylogenic tree analysis showed relatedness among the isolates in other African countries. This observation is an indication of cross contamination among the milk and its related samples.

9.
Membranes (Basel) ; 12(6)2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-35736298

RESUMO

Reusing water and excess detergent from the laundry industry has become an attractive method to combat water shortages. Membrane filtration is considered an advanced technique and highly attractive due to its excellent advantages. However, the conventional membrane filtration method suffers from membrane fouling, which restricts its performance and diminishes its economic viability. This study assesses the preliminary performance of submerged, gravity-driven membrane filtration­under ultra-low trans-membrane pressure (△P) of <0.1 bar­to combat membrane fouling issues for detergent and water recovery from laundry wastewater. The results show that even under ultra-low pressure, the membrane suffered from compaction that lowered its permeability by 14% under △P of 6 and 10 kPa, with corresponding permeabilities of 2085 ± 259 and 1791 ± 42 L/(m2 h bar). Filtration of a detergent solution also led to up to 8% permeability loss due to membrane fouling. During the filtration of laundry wastewater, 80−91% permeability loss was observed, leading to the lowest flux of 15.6 L/(m2·h) at △P of 10 kPa, 38% lower than △P of 6 kPa (of 25.2 L/(m2·h)). High △P led to both the membrane and the foulant compaction inflating the filtration resistance. The system could recover 83.6% of excess residual detergent, while most micelles were rejected (ascribed from 71% of COD removal). The TDS content could not be retained, disallowing maximum resource recovery. A gravity-driven filtration system can be self-sustained with minimum supervision in residential and industrial laundries. Nevertheless, a detailed study on long-term filtration performance and multiple cleaning cycles is still required in the future.

10.
Artigo em Inglês | MEDLINE | ID: mdl-35600954

RESUMO

Ananas comosus peels (AcP) are among the agro-industrial biomasses contributing to a significant volume of waste in Malaysia. Thus, the AcP extract (AcPE) may prove useful for other applications, such as an ingredient in a nanocream for controlled delivery for dermal application. Therefore, this study aimed to develop an oil-in-water (O/W) nanocream using ingredients derived from the AcPE and test its stability alongside safety evaluation. The extract is a rich source of polyphenolic compounds viz., catechin, quercetin, and gallic acid. The study discovered that the optimized AcPE nano cream was stable against coalescence during the accelerated test but was influenced by Ostwald ripening over 6 weeks of storage at 4°C. Safety assessments affirmed the AcPE nano cream to be free of microbial contamination and heavy metals. The findings conveyed that the A. comosus nano cream is a good cosmetic ingredient and may contribute to the cosmeceutical industry's new and safe topical products.

11.
Sci Rep ; 11(1): 20851, 2021 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-34675286

RESUMO

Nanoemulsion is a delivery system used to enhance bioavailability of plant-based compounds across the stratum corneum. Elaeis guineensis leaves are rich source of polyphenolic antioxidants, viz. gallic acid and catechin. The optimal E. guineensis leaves extract water-in-oil nanoemulsion was stable against coalescence, but it was under significant influence of Ostwald ripening over 90 days at 25 °C. The in-vitro permeability revealed a controlled and sustained release of the total phenolic compounds (TPC) of EgLE with a cumulative amount of 1935.0 ± 45.7 µgcm-2 after 8 h. The steady-state flux and permeation coefficient values were 241.9 ± 5.7 µgcm-2 h-1 and 1.15 ± 0.03 cm.h-1, respectively. The kinetic release mechanism for TPC of EgLE was best described by the Korsmeyer-Peppas model due to the highest linearity of R2 = 0.9961, indicating super case II transport mechanism. The in-silico molecular modelling predicted that the aquaporin-3 protein in the stratum corneum bonded preferably to catechin over gallic acid through hydrogen bonds due to the lowest binding energies of - 57.514 kcal/mol and - 8.553 kcal/mol, respectively. Thus, the in-silico study further verified that catechin could improve skin hydration. Therefore, the optimal nanoemulsion could be used topically as moisturizer to enhance skin hydration based on the in-silico prediction.


Assuntos
Arecaceae/química , Emulsões/química , Extratos Vegetais/química , Folhas de Planta/química , Água/química , Administração Cutânea , Emulsões/administração & dosagem , Emulsões/farmacocinética , Humanos , Modelos Moleculares , Permeabilidade , Extratos Vegetais/administração & dosagem , Extratos Vegetais/farmacocinética , Pele/metabolismo , Absorção Cutânea , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA