Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 170
Filtrar
1.
Stroke ; 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38639087

RESUMO

BACKGROUND: Cortical excitation/inhibition dynamics have been suggested as a key mechanism occurring after stroke. Their supportive or maladaptive role in the course of recovery is still not completely understood. Here, we used transcranial magnetic stimulation (TMS)-electroencephalography coupling to study cortical reactivity and intracortical GABAergic inhibition, as well as their relationship to residual motor function and recovery longitudinally in patients with stroke. METHODS: Electroencephalography responses evoked by TMS applied to the ipsilesional motor cortex were acquired in patients with stroke with upper limb motor deficit in the acute (1 week), early (3 weeks), and late subacute (3 months) stages. Readouts of cortical reactivity, intracortical inhibition, and complexity of the evoked dynamics were drawn from TMS-evoked potentials induced by single-pulse and paired-pulse TMS (short-interval intracortical inhibition). Residual motor function was quantified through a detailed motor evaluation. RESULTS: From 76 patients enrolled, 66 were included (68.2±13.2 years old, 18 females), with a Fugl-Meyer score of the upper extremity of 46.8±19. The comparison with TMS-evoked potentials of healthy older revealed that most affected patients exhibited larger and simpler brain reactivity patterns (Pcluster<0.05). Bayesian ANCOVA statistical evidence for a link between abnormally high motor cortical excitability and impairment level. A decrease in excitability in the following months was significantly correlated with better motor recovery in the whole cohort and the subgroup of recovering patients. Investigation of the intracortical GABAergic inhibitory system revealed the presence of beneficial disinhibition in the acute stage, followed by a normalization of inhibitory activity. This was supported by significant correlations between motor scores and the contrast of local mean field power and readouts of signal dynamics. CONCLUSIONS: The present results revealed an abnormal motor cortical reactivity in patients with stroke, which was driven by perturbations and longitudinal changes within the intracortical inhibition system. They support the view that disinhibition in the ipsilesional motor cortex during the first-week poststroke is beneficial and promotes neuronal plasticity and recovery.

2.
Hum Brain Mapp ; 45(5): e26654, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38520361

RESUMO

Obesity represents a significant public health concern and is linked to various comorbidities and cognitive impairments. Previous research indicates that elevated body mass index (BMI) is associated with structural changes in white matter (WM). However, a deeper characterization of body composition is required, especially considering the links between abdominal obesity and metabolic dysfunction. This study aims to enhance our understanding of the relationship between obesity and WM connectivity by directly assessing the amount and distribution of fat tissue. Whole-body magnetic resonance imaging (MRI) was employed to evaluate total adipose tissue (TAT), visceral adipose tissue (VAT), and subcutaneous adipose tissue (SAT), while MR liver spectroscopy measured liver fat content in 63 normal-weight, overweight, and obese males. WM connectivity was quantified using microstructure-informed tractography. Connectome-based predictive modeling was used to predict body composition metrics based on WM connectomes. Our analysis revealed a positive dependency between BMI, TAT, SAT, and WM connectivity in brain regions involved in reward processing and appetite regulation, such as the insula, nucleus accumbens, and orbitofrontal cortex. Increased connectivity was also observed in cognitive control and inhibition networks, including the middle frontal gyrus and anterior cingulate cortex. No significant associations were found between WM connectivity and VAT or liver fat. Our findings suggest that altered neural communication between these brain regions may affect cognitive processes, emotional regulation, and reward perception in individuals with obesity, potentially contributing to weight gain. While our study did not identify a link between WM connectivity and VAT or liver fat, further investigation of the role of various fat depots and metabolic factors in brain networks is required to advance obesity prevention and treatment approaches.


Assuntos
Imageamento por Ressonância Magnética , Substância Branca , Masculino , Humanos , Substância Branca/patologia , Distribuição Tecidual , Imagem Corporal Total , Obesidade/diagnóstico por imagem , Obesidade/complicações , Tecido Adiposo/diagnóstico por imagem , Tecido Adiposo/metabolismo , Tecido Adiposo/patologia
3.
J Exp Med ; 221(5)2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38517332

RESUMO

Heterozygous mutations in the TBK1 gene can cause amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). The majority of TBK1-ALS/FTD patients carry deleterious loss-of-expression mutations, and it is still unclear which TBK1 function leads to neurodegeneration. We investigated the impact of the pathogenic TBK1 missense variant p.E696K, which does not abolish protein expression, but leads to a selective loss of TBK1 binding to the autophagy adaptor protein and TBK1 substrate optineurin. Using organelle-specific proteomics, we found that in a knock-in mouse model and human iPSC-derived motor neurons, the p.E696K mutation causes presymptomatic onset of autophagolysosomal dysfunction in neurons precipitating the accumulation of damaged lysosomes. This is followed by a progressive, age-dependent motor neuron disease. Contrary to the phenotype of mice with full Tbk1 knock-out, RIPK/TNF-α-dependent hepatic, neuronal necroptosis, and overt autoinflammation were not detected. Our in vivo results indicate autophagolysosomal dysfunction as a trigger for neurodegeneration and a promising therapeutic target in TBK1-ALS/FTD.


Assuntos
Esclerose Lateral Amiotrófica , Demência Frontotemporal , Animais , Humanos , Camundongos , Esclerose Lateral Amiotrófica/patologia , Demência Frontotemporal/genética , Demência Frontotemporal/metabolismo , Demência Frontotemporal/patologia , Neurônios Motores/patologia , Mutação , Doenças Neuroinflamatórias , Fosforilação , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo
4.
Int J Mol Sci ; 25(6)2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38542188

RESUMO

Induced pluripotent stem cells (iPSCs) and their derivatives have been described to display epigenetic memory of their founder cells, as well as de novo reprogramming-associated alterations. In order to selectively explore changes due to the reprogramming process and not to heterologous somatic memory, we devised a circular reprogramming approach where somatic stem cells are used to generate iPSCs, which are subsequently re-differentiated into their original fate. As somatic founder cells, we employed human embryonic stem cell-derived neural stem cells (NSCs) and compared them to iPSC-derived NSCs derived thereof. Global transcription profiling of this isogenic circular system revealed remarkably similar transcriptomes of both NSC populations, with the exception of 36 transcripts. Amongst these we detected a disproportionately large fraction of X chromosomal genes, all of which were upregulated in iPSC-NSCs. Concurrently, we detected differential methylation of X chromosomal sites spatially coinciding with regions harboring differentially expressed genes. While our data point to a pronounced overall reinstallation of autosomal transcriptomic and methylation signatures when a defined somatic lineage is propagated through pluripotency, they also indicate that X chromosomal genes may partially escape this reinstallation process. Considering the broad application of iPSCs in disease modeling and regenerative approaches, such reprogramming-associated alterations in X chromosomal gene expression and DNA methylation deserve particular attention.


Assuntos
Células-Tronco Pluripotentes Induzidas , Células-Tronco Neurais , Humanos , Metilação de DNA , Células-Tronco Neurais/metabolismo , Diferenciação Celular/genética , Epigênese Genética , Reprogramação Celular/genética
5.
Sci Transl Med ; 16(736): eabq4581, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38416842

RESUMO

Fibrosis is a hallmark of chronic disease. Although fibroblasts are involved, it is unclear to what extent endothelial cells also might contribute. We detected increased expression of the transcription factor Sox9 in endothelial cells in several different mouse fibrosis models. These models included systolic heart failure induced by pressure overload, diastolic heart failure induced by high-fat diet and nitric oxide synthase inhibition, pulmonary fibrosis induced by bleomycin treatment, and liver fibrosis due to a choline-deficient diet. We also observed up-regulation of endothelial SOX9 in cardiac tissue from patients with heart failure. To test whether SOX9 induction was sufficient to cause disease, we generated mice with endothelial cell-specific overexpression of Sox9, which promoted fibrosis in multiple organs and resulted in signs of heart failure. Endothelial Sox9 deletion prevented fibrosis and organ dysfunction in the two mouse models of heart failure as well as in the lung and liver fibrosis mouse models. Bulk and single-cell RNA sequencing of mouse endothelial cells across multiple vascular beds revealed that SOX9 induced extracellular matrix, growth factor, and inflammatory gene expression, leading to matrix deposition by endothelial cells. Moreover, mouse endothelial cells activated neighboring fibroblasts that then migrated and deposited matrix in response to SOX9, a process partly mediated by the secreted growth factor CCN2, a direct SOX9 target; endothelial cell-specific Sox9 deletion reversed these changes. These findings suggest a role for endothelial SOX9 as a fibrosis-promoting factor in different mouse organs during disease and imply that endothelial cells are an important regulator of fibrosis.


Assuntos
Insuficiência Cardíaca , Fatores de Transcrição , Animais , Humanos , Camundongos , Modelos Animais de Doenças , Células Endoteliais , Fibrose , Peptídeos e Proteínas de Sinalização Intercelular , Cirrose Hepática/complicações , Fatores de Transcrição SOX9/genética
6.
NPJ Regen Med ; 9(1): 10, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38424446

RESUMO

Skeletal muscle function crucially depends on innervation while repair of skeletal muscle relies on resident muscle stem cells (MuSCs). However, it is poorly understood how innervation affects MuSC properties and thereby regeneration of skeletal muscle. Here, we report that loss of innervation causes precocious activation of MuSCs concomitant with the expression of markers of myogenic differentiation. This aberrant activation of MuSCs after loss of innervation is accompanied by profound alterations on the mRNA and protein level. Combination of muscle injury with loss of innervation results in impaired regeneration of skeletal muscle including shifts in myogenic populations concomitant with delayed maturation of regenerating myofibers. We further demonstrate that loss of innervation leads to alterations in myofibers and their secretome, which then affect MuSC behavior. In particular, we identify an increased secretion of Osteopontin and transforming growth factor beta 1 (Tgfb1) by myofibers isolated from mice which had undergone sciatic nerve transection. The altered secretome results in the upregulation of early activating transcription factors, such as Junb, and their target genes in MuSCs. However, the combination of different secreted factors from myofibers after loss of innervation is required to cause the alterations observed in MuSCs after loss of innervation. These data demonstrate that loss of innervation first affects myofibers causing alterations in their secretome which then affect MuSCs underscoring the importance of proper innervation for MuSC functionality and regeneration of skeletal muscle.

7.
Stroke ; 54(12): 3081-3089, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-38011237

RESUMO

BACKGROUND: The indication for mechanical thrombectomy (MT) in stroke patients with large vessel occlusion has been constantly expanded over the past years. Despite remarkable treatment effects at the group level in clinical trials, many patients remain severely disabled even after successful recanalization. A better understanding of this outcome variability will help to improve clinical decision-making on MT in the acute stage. Here, we test whether current outcome models can be refined by integrating information on the preservation of the corticospinal tract as a functionally crucial white matter tract derived from acute perfusion imaging. METHODS: We retrospectively analyzed 162 patients with stroke and large vessel occlusion of the anterior circulation who were admitted to the University Medical Center Lübeck between 2014 and 2020 and underwent MT. The ischemic core was defined as fully automatized based on the acute computed tomography perfusion with cerebral blood volume data using outlier detection and clustering algorithms. Normative whole-brain structural connectivity data were used to infer whether the corticospinal tract was affected by the ischemic core or preserved. Ordinal logistic regression models were used to correlate this information with the modified Rankin Scale after 90 days. RESULTS: The preservation of the corticospinal tract was associated with a reduced risk of a worse functional outcome in large vessel occlusion-stroke patients undergoing MT, with an odds ratio of 0.28 (95% CI, 0.15-0.53). This association was still significant after adjusting for multiple confounding covariables, such as age, lesion load, initial symptom severity, sex, stroke side, and recanalization status. CONCLUSIONS: A preinterventional computed tomography perfusion-based surrogate of corticospinal tract preservation or disconnectivity is strongly associated with functional outcomes after MT. If validated in independent samples this concept could serve as a novel tool to improve current outcome models to better understand intersubject variability after MT in large vessel occlusion stroke.


Assuntos
Isquemia Encefálica , Acidente Vascular Cerebral , Humanos , Isquemia Encefálica/diagnóstico por imagem , Isquemia Encefálica/cirurgia , Estudos Retrospectivos , Tratos Piramidais/diagnóstico por imagem , Resultado do Tratamento , Acidente Vascular Cerebral/diagnóstico por imagem , Acidente Vascular Cerebral/cirurgia , Trombectomia/métodos , Imagem de Perfusão/métodos
8.
Cell ; 186(24): 5328-5346.e26, 2023 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-37883971

RESUMO

Lysosomes serve dual antagonistic functions in cells by mediating anabolic growth signaling and the catabolic turnover of macromolecules. How these janus-faced activities are regulated in response to cellular nutrient status is poorly understood. We show here that lysosome morphology and function are reversibly controlled by a nutrient-regulated signaling lipid switch that triggers the conversion between peripheral motile mTOR complex 1 (mTORC1) signaling-active and static mTORC1-inactive degradative lysosomes clustered at the cell center. Starvation-triggered relocalization of phosphatidylinositol 4-phosphate (PI(4)P)-metabolizing enzymes reshapes the lysosomal surface proteome to facilitate lysosomal proteolysis and to repress mTORC1 signaling. Concomitantly, lysosomal phosphatidylinositol 3-phosphate (PI(3)P), which marks motile signaling-active lysosomes in the cell periphery, is erased. Interference with this PI(3)P/PI(4)P lipid switch module impairs the adaptive response of cells to altering nutrient supply. Our data unravel a key function for lysosomal phosphoinositide metabolism in rewiring organellar membrane dynamics in response to cellular nutrient status.


Assuntos
Lisossomos , Transdução de Sinais , Lisossomos/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Nutrientes , Fenômenos Fisiológicos Celulares
9.
IEEE J Biomed Health Inform ; 27(10): 4748-4757, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37552591

RESUMO

Human sleep is cyclical with a period of approximately 90 minutes, implying long temporal dependency in the sleep data. Yet, exploring this long-term dependency when developing sleep staging models has remained untouched. In this work, we show that while encoding the logic of a whole sleep cycle is crucial to improve sleep staging performance, the sequential modelling approach in existing state-of-the-art deep learning models are inefficient for that purpose. We thus introduce a method for efficient long sequence modelling and propose a new deep learning model, L-SeqSleepNet, which takes into account whole-cycle sleep information for sleep staging. Evaluating L-SeqSleepNet on four distinct databases of various sizes, we demonstrate state-of-the-art performance obtained by the model over three different EEG setups, including scalp EEG in conventional Polysomnography (PSG), in-ear EEG, and around-the-ear EEG (cEEGrid), even with a single EEG channel input. Our analyses also show that L-SeqSleepNet is able to alleviate the predominance of N2 sleep (the major class in terms of classification) to bring down errors in other sleep stages. Moreover the network becomes much more robust, meaning that for all subjects where the baseline method had exceptionally poor performance, their performance are improved significantly. Finally, the computation time only grows at a sub-linear rate when the sequence length increases.

10.
Med ; 4(9): 591-599.e3, 2023 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-37437575

RESUMO

BACKGROUND: Around 25% of patients who have had a stroke suffer from severe upper-limb impairment and lack effective rehabilitation strategies. The AVANCER proof-of-concept clinical trial (NCT04448483) tackles this issue through an intensive and personalized-dosage cumulative intervention that combines multiple non-invasive neurotechnologies. METHODS: The therapy consists of two sequential interventions, lasting until the patient shows no further motor improvement, for a minimum of 11 sessions each. The first phase involves a brain-computer interface governing an exoskeleton and multi-channel functional electrical stimulation enabling full upper-limb movements. The second phase adds anodal transcranial direct current stimulation of the motor cortex of the lesioned hemisphere. Clinical, electrophysiological, and neuroimaging examinations are performed before, between, and after the two interventions (T0, T1, and T2). This case report presents the results from the first patient of the study. FINDINGS: The primary outcome (i.e., 4-point improvement in the Fugl-Meyer assessment of the upper extremity) was met in the first patient, with an increase from 6 to 11 points between T0 and T2. This improvement was paralleled by changes in motor-network structure and function. Resting-state and transcranial magnetic stimulation-evoked electroencephalography revealed brain functional changes, and magnetic resonance imaging (MRI) measures detected structural and task-related functional changes. CONCLUSIONS: These first results are promising, pointing to feasibility, safety, and potential efficacy of this personalized approach acting synergistically on the nervous and musculoskeletal systems. Integrating multi-modal data may provide valuable insights into underlying mechanisms driving the improvements and providing predictive information regarding treatment response and outcomes. FUNDING: This work was funded by the Wyss-Center for Bio and Neuro Engineering (WCP-030), the Defitech Foundation, PHRT-#2017-205, ERA-NET-NEURON (Discover), and SNSF (320030L_197899, NiBS-iCog).


Assuntos
Reabilitação do Acidente Vascular Cerebral , Acidente Vascular Cerebral , Estimulação Transcraniana por Corrente Contínua , Humanos , Estimulação Transcraniana por Corrente Contínua/métodos , Reabilitação do Acidente Vascular Cerebral/métodos , Medicina de Precisão , Resultado do Tratamento , Acidente Vascular Cerebral/terapia , Extremidade Superior
11.
Mol Ther ; 31(9): 2612-2632, 2023 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-37452493

RESUMO

Rhabdomyosarcoma is the most common pediatric soft tissue tumor, comprising two major subtypes: the PAX3/7-FOXO1 fusion-negative embryonal and the PAX3/7-FOXO1 fusion-positive alveolar subtype. Here, we demonstrate that the expression levels of the transcriptional repressor TRPS1 are specifically enhanced in the embryonal subtype, resulting in impaired terminal myogenic differentiation and tumor growth. During normal myogenesis, expression levels of TRPS1 have to decrease to allow myogenic progression, as demonstrated by overexpression of TRPS1 in myoblasts impairing myotube formation. Consequentially, myogenic differentiation in embryonal rhabdomyosarcoma in vitro as well as in vivo can be achieved by reducing TRPS1 levels. Furthermore, we show that TRPS1 levels in RD cells, the bona fide model cell line for embryonal rhabdomyosarcoma, are regulated by miR-1 and that TRPS1 and MYOD1 share common genomic binding sites. The myogenin (MYOG) promoter is one of the critical targets of TRPS1 and MYOD1; we demonstrate that TRPS1 restricts MYOG expression and thereby inhibits terminal myogenic differentiation. Therefore, reduction of TRPS1 levels in embryonal rhabdomyosarcoma might be a therapeutic approach to drive embryonal rhabdomyosarcoma cells into myogenic differentiation, thereby generating postmitotic myotubes.


Assuntos
MicroRNAs , Rabdomiossarcoma Embrionário , Humanos , Criança , Rabdomiossarcoma Embrionário/genética , Rabdomiossarcoma Embrionário/metabolismo , Rabdomiossarcoma Embrionário/patologia , Miogenina/genética , Miogenina/metabolismo , Diferenciação Celular/genética , MicroRNAs/genética , Desenvolvimento Muscular/genética , Linhagem Celular Tumoral , Proteínas Repressoras
12.
Cell Rep ; 42(8): 112836, 2023 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-37471222

RESUMO

Liver sinusoidal endothelial cells (LSECs) rapidly clear lipopolysaccharide (LPS) from the bloodstream and establish intimate contact with immune cells. However, their role in regulating liver inflammation remains poorly understood. We show that LSECs modify their chemokine expression profile driven by LPS or interferon-γ (IFN-γ), resulting in the production of the myeloid- or lymphoid-attracting chemokines CCL2 and CXCL10, respectively, which accumulate in the serum of LPS-challenged animals. Natural killer (NK) cell exposure to LSECs in vitro primes NK cells for higher production of IFN-γ in response to interleukin-12 (IL-12) and IL-18. In livers of LPS-injected mice, NK cells are the major producers of this cytokine. In turn, LSECs require exposure to IFN-γ for CXCL10 expression, and endothelial-specific Cxcl10 gene deletion curtails NK cell accumulation in the inflamed livers. Thus, LSECs respond to both LPS and immune-derived signals and fuel a positive feedback loop of immune cell attraction and activation in the inflamed liver tissue.


Assuntos
Células Endoteliais , Lipopolissacarídeos , Camundongos , Animais , Células Endoteliais/metabolismo , Lipopolissacarídeos/farmacologia , Lipopolissacarídeos/metabolismo , Células Matadoras Naturais , Fígado/metabolismo , Interferon gama/metabolismo , Camundongos Endogâmicos C57BL
13.
Sci Adv ; 9(21): eabq7806, 2023 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-37235660

RESUMO

Sepsis-associated encephalopathy (SAE) is a severe and frequent complication of sepsis causing delirium, coma, and long-term cognitive dysfunction. We identified microglia and C1q complement activation in hippocampal autopsy tissue of patients with sepsis and increased C1q-mediated synaptic pruning in a murine polymicrobial sepsis model. Unbiased transcriptomics of hippocampal tissue and isolated microglia derived from septic mice revealed an involvement of the innate immune system, complement activation, and up-regulation of lysosomal pathways during SAE in parallel to neuronal and synaptic damage. Microglial engulfment of C1q-tagged synapses could be prevented by stereotactic intrahippocampal injection of a specific C1q-blocking antibody. Pharmacologically targeting microglia by PLX5622, a CSF1-R inhibitor, reduced C1q levels and the number of C1q-tagged synapses, protected from neuronal damage and synapse loss, and improved neurocognitive outcome. Thus, we identified complement-dependent synaptic pruning by microglia as a crucial pathomechanism for the development of neuronal defects during SAE.


Assuntos
Encefalopatia Associada a Sepse , Sepse , Camundongos , Animais , Microglia/metabolismo , Complemento C1q/metabolismo , Encefalopatia Associada a Sepse/etiologia , Encefalopatia Associada a Sepse/metabolismo , Sinapses/metabolismo , Sepse/complicações , Sepse/metabolismo
14.
bioRxiv ; 2023 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-36747849

RESUMO

3'-Phosphoinositides are ubiquitous cellular lipids that play pivotal regulatory roles in health and disease. Generation of 3'-phosphoinositides are driven by three families of phosphoinositide 3-kinases (PI3K) but the mechanisms underlying their regulation and cross-talk are not fully understood. Among 3'-phosphoinositides, phosphatidylinositol-3,5-bisphosphate (PI(3,5)P 2 ) remains the least understood species in terms of its spatiotemporal dynamics and physiological function due to the lack of specific probes. By means of spatiotemporally resolved in situ quantitative imaging of PI(3,5)P 2 using a newly developed ratiometric PI(3,5)P 2 sensor we demonstrate that a special pool of PI(3,5)P 2 is generated on lysosomes and late endosomes in response to growth factor stimulation. This PI(3,5)P 2 pool, the formation of which is mediated by Class II PI3KC2ß and PIKFyve, plays a crucial role in terminating the activity of growth factor-stimulated Class I PI3K, one of the most frequently mutated proteins in cancer, via specific interaction with its regulatory p85 subunit. Cancer-causing mutations of Class I PI3K inhibit the p85-PI(3,5)P 2 interaction and thereby induce sustained activation of Class I PI3K. Our results unravel a hitherto unknown tight regulatory interplay between Class I and II PI3Ks mediated by PI(3,5)P 2 , which may be important for controlling the strength of PI3K-mediated growth factor signaling. These results also suggest a new therapeutic possibility of treating cancer patients with p85 mutations.

15.
Stroke ; 54(4): 955-963, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36846963

RESUMO

BACKGROUND: Most studies on stroke have been designed to examine one deficit in isolation; yet, survivors often have multiple deficits in different domains. While the mechanisms underlying multiple-domain deficits remain poorly understood, network-theoretical methods may open new avenues of understanding. METHODS: Fifty subacute stroke patients (7±3days poststroke) underwent diffusion-weighted magnetic resonance imaging and a battery of clinical tests of motor and cognitive functions. We defined indices of impairment in strength, dexterity, and attention. We also computed imaging-based probabilistic tractography and whole-brain connectomes. To efficiently integrate inputs from different sources, brain networks rely on a rich-club of a few hub nodes. Lesions harm efficiency, particularly when they target the rich-club. Overlaying individual lesion masks onto the tractograms enabled us to split the connectomes into their affected and unaffected parts and associate them to impairment. RESULTS: We computed efficiency of the unaffected connectome and found it was more strongly correlated to impairment in strength, dexterity, and attention than efficiency of the total connectome. The magnitude of the correlation between efficiency and impairment followed the order attention>dexterity ≈ strength (strength: |r|=.03, P=0.02, dexterity: |r|=.30, P=0.05, attention: |r|=.55, P<0.001). Network weights associated with the rich-club were more strongly correlated to efficiency than non-rich-club weights. CONCLUSIONS: Attentional impairment is more sensitive to disruption of coordinated networks between brain regions than motor impairment, which is sensitive to disruption of localized networks. Providing more accurate reflections of actually functioning parts of the network enables the incorporation of information about the impact of brain lesions on connectomics contributing to a better understanding of underlying stroke mechanisms.


Assuntos
Disfunção Cognitiva , Conectoma , Acidente Vascular Cerebral , Humanos , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Imagem de Difusão por Ressonância Magnética/métodos , Acidente Vascular Cerebral/complicações , Acidente Vascular Cerebral/diagnóstico por imagem , Acidente Vascular Cerebral/patologia , Disfunção Cognitiva/patologia , Cognição , Conectoma/métodos , Imageamento por Ressonância Magnética
16.
Nature ; 613(7942): 179-186, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36517594

RESUMO

Diffuse gliomas, particularly glioblastomas, are incurable brain tumours1. They are characterized by networks of interconnected brain tumour cells that communicate via Ca2+ transients2-6. However, the networks' architecture and communication strategy and how these influence tumour biology remain unknown. Here we describe how glioblastoma cell networks include a small, plastic population of highly active glioblastoma cells that display rhythmic Ca2+ oscillations and are particularly connected to others. Their autonomous periodic Ca2+ transients preceded Ca2+ transients of other network-connected cells, activating the frequency-dependent MAPK and NF-κB pathways. Mathematical network analysis revealed that glioblastoma network topology follows scale-free and small-world properties, with periodic tumour cells frequently located in network hubs. This network design enabled resistance against random damage but was vulnerable to losing its key hubs. Targeting of autonomous rhythmic activity by selective physical ablation of periodic tumour cells or by genetic or pharmacological interference with the potassium channel KCa3.1 (also known as IK1, SK4 or KCNN4) strongly compromised global network communication. This led to a marked reduction of tumour cell viability within the entire network, reduced tumour growth in mice and extended animal survival. The dependency of glioblastoma networks on periodic Ca2+ activity generates a vulnerability7 that can be exploited for the development of novel therapies, such as with KCa3.1-inhibiting drugs.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Animais , Camundongos , Encéfalo/metabolismo , Encéfalo/patologia , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Glioblastoma/genética , Glioblastoma/metabolismo , Glioblastoma/patologia , NF-kappa B/metabolismo , Sistema de Sinalização das MAP Quinases , Sinalização do Cálcio , Morte Celular , Análise de Sobrevida , Cálcio/metabolismo
18.
Hepatology ; 77(4): 1211-1227, 2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35776660

RESUMO

BACKGROUND AND AIMS: In hereditary hemorrhagic telangiectasia (HHT), severe liver vascular malformations are associated with mutations in the Activin A Receptor-Like Type 1 ( ACVRL1 ) gene encoding ALK1, the receptor for bone morphogenetic protein (BMP) 9/BMP10, which regulates blood vessel development. Here, we established an HHT mouse model with exclusive liver involvement and adequate life expectancy to investigate ALK1 signaling in liver vessel formation and metabolic function. APPROACH AND RESULTS: Liver sinusoidal endothelial cell (LSEC)-selective Cre deleter line, Stab2-iCreF3 , was crossed with Acvrl1 -floxed mice to generate LSEC-specific Acvrl1 -deficient mice ( Alk1HEC-KO ). Alk1HEC-KO mice revealed hepatic vascular malformations and increased posthepatic flow, causing right ventricular volume overload. Transcriptomic analyses demonstrated induction of proangiogenic/tip cell gene sets and arterialization of hepatic vessels at the expense of LSEC and central venous identities. Loss of LSEC angiokines Wnt2 , Wnt9b , and R-spondin-3 ( Rspo3 ) led to disruption of metabolic liver zonation in Alk1HEC-KO mice and in liver specimens of patients with HHT. Furthermore, prion-like protein doppel ( Prnd ) and placental growth factor ( Pgf ) were upregulated in Alk1HEC-KO hepatic endothelial cells, representing candidates driving the organ-specific pathogenesis of HHT. In LSEC in vitro , stimulation or inhibition of ALK1 signaling counter-regulated Inhibitors of DNA binding (ID)1-3, known Alk1 transcriptional targets. Stimulation of ALK1 signaling and inhibition of ID1-3 function confirmed regulation of Wnt2 and Rspo3 by the BMP9/ALK1/ID axis. CONCLUSIONS: Hepatic endothelial ALK1 signaling protects from development of vascular malformations preserving organ-specific endothelial differentiation and angiocrine signaling. The long-term surviving Alk1HEC-KO HHT model offers opportunities to develop targeted therapies for this severe disease.


Assuntos
Telangiectasia Hemorrágica Hereditária , Camundongos , Feminino , Animais , Telangiectasia Hemorrágica Hereditária/genética , Células Endoteliais/metabolismo , Fator de Crescimento Placentário/metabolismo , Fígado/patologia , Transdução de Sinais , Fator 2 de Diferenciação de Crescimento/metabolismo , Moléculas de Adesão Celular Neuronais/metabolismo
19.
Stem Cell Res ; 66: 102989, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36473250

RESUMO

Brain-derived neurotrophic factor (BDNF) has been implicated in a multitude of neurodevelopmental processes including neuronal differentiation, axonal outgrowth, synaptic plasticity, or survival. One human-specific single nucleotide polymorphism (rs6265) in the BDNF gene causes a substitution of valine (Val) to methionine (Met) at codon 66 in the pro domain of the protein (Val66Met). This substitution is associated to reduced hippocampal volumes, poor performance on hippocampal-dependent memory tasks, and some mental disorders such as schizophrenia, depression or Alzheimer's disease. Here we generated three iPSC lines from healthy donors, either homozygous (Val/Val and Met/Met) or heterozygous (Val/Met) for the polymorphism.


Assuntos
Células-Tronco Pluripotentes Induzidas , Esquizofrenia , Humanos , Fator Neurotrófico Derivado do Encéfalo/genética , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Polimorfismo de Nucleotídeo Único , Esquizofrenia/genética , Hipocampo/metabolismo , Metionina/genética , Racemetionina
20.
Cancer Cell Int ; 22(1): 398, 2022 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-36496412

RESUMO

BACKGROUND: Hyaluronan receptor LYVE-1 is expressed by liver sinusoidal endothelial cells (LSEC), lymphatic endothelial cells and specialized macrophages. Besides binding to hyaluronan, LYVE-1 can mediate adhesion of leukocytes and cancer cells to endothelial cells. Here, we assessed the impact of LYVE-1 on physiological liver functions and metastasis. METHODS: Mice with deficiency of Lyve-1 (Lyve-1-KO) were analyzed using histology, immunofluorescence, microarray analysis, plasma proteomics and flow cytometry. Liver metastasis was studied by intrasplenic/intravenous injection of melanoma (B16F10 luc2, WT31) or colorectal carcinoma (MC38). RESULTS: Hepatic architecture, liver size, endothelial differentiation and angiocrine functions were unaltered in Lyve-1-KO. Hyaluronan plasma levels were significantly increased in Lyve-1-KO. Besides, plasma proteomics revealed increased carbonic anhydrase-2 and decreased FXIIIA. Furthermore, gene expression analysis of LSEC indicated regulation of immunological pathways. Therefore, liver metastasis of highly and weakly immunogenic tumors, i.e. melanoma and colorectal carcinoma (CRC), was analyzed. Hepatic metastasis of B16F10 luc2 and WT31 melanoma cells, but not MC38 CRC cells, was significantly reduced in Lyve-1-KO mice. In vivo retention assays with B16F10 luc2 cells were unaltered between Lyve-1-KO and control mice. However, in tumor-free Lyve-1-KO livers numbers of hepatic CD4+, CD8+ and regulatory T cells were increased. In addition, iron deposition was found in F4/80+ liver macrophages known to exert pro-inflammatory effects. CONCLUSION: Lyve-1 deficiency controlled hepatic metastasis in a tumor cell-specific manner leading to reduced growth of hepatic metastases of melanoma, but not CRC. Anti-tumorigenic effects are likely due to enhancement of the premetastatic hepatic immune microenvironment influencing early liver metastasis formation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA