Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Physiol Plant ; 173(4): 2103-2118, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34545591

RESUMO

The KNOTTED1-LIKE HOMEOBOX PROTEIN1 (KD1) gene is highly expressed in flower and leaf abscission zones (AZs), and KD1 was reported to regulate tomato flower pedicel abscission via alteration of the auxin gradient and response in the flower AZ (FAZ). The present work was aimed to further examine how KD1 regulates signaling factors and regulatory genes involved in pedicel abscission, by using silenced KD1 lines and performing a large-scale transcriptome profiling of the FAZ before and after flower removal, using a customized AZ-specific microarray. The results highlighted a differential expression of regulatory genes in the FAZ of KD1-silenced plants compared to the wild-type. In the TAPG4::antisense KD1-silenced plants, KD1 gene expression decreased before flower removal, resulting in altered expression of regulatory genes, such as epigenetic modifiers, transcription factors, posttranslational regulators, and antioxidative defense factors occurring at zero time and before affecting auxin levels in the FAZ detected at 4 h after flower removal. The expression of additional regulatory genes was altered in the FAZ of KD1-silenced plants at 4-20 h after flower removal, thereby leading to an inhibited abscission phenotype, and downregulation of genes involved in abscission execution and defense processes. Our data suggest that KD1 is a master regulator of the abscission process, which promotes abscission of tomato flower pedicels. This suggestion is based on the inhibitory effect of KD1 silencing on flower pedicel abscission that operates via alteration of various regulatory pathways, which delay the competence acquisition of the FAZ cells to respond to ethylene signaling.


Assuntos
Solanum lycopersicum , Flores/genética , Flores/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Homeodomínio , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
2.
Hortic Res ; 5: 28, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29872533

RESUMO

The Tomato Hybrid Proline-rich Protein (THyPRP) gene was specifically expressed in the tomato (Solanum lycopersicum) flower abscission zone (FAZ), and its stable antisense silencing under the control of an abscission zone (AZ)-specific promoter, Tomato Abscission Polygalacturonase4, significantly inhibited tomato pedicel abscission following flower removal. For understanding the THyPRP role in regulating pedicel abscission, a transcriptomic analysis of the FAZ of THyPRP-silenced plants was performed, using a newly developed AZ-specific tomato microarray chip. Decreased expression of THyPRP in the silenced plants was already observed before abscission induction, resulting in FAZ-specific altered gene expression of transcription factors, epigenetic modifiers, post-translational regulators, and transporters. Our data demonstrate that the effect of THyPRP silencing on pedicel abscission was not mediated by its effect on auxin balance, but by decreased ethylene biosynthesis and response. Additionally, THyPRP silencing revealed new players, which were demonstrated for the first time to be involved in regulating pedicel abscission processes. These include: gibberellin perception, Ca2+-Calmodulin signaling, Serpins and Small Ubiquitin-related Modifier proteins involved in post-translational modifications, Synthaxin and SNARE-like proteins, which participate in exocytosis, a process necessary for cell separation. These changes, occurring in the silenced plants early after flower removal, inhibited and/or delayed the acquisition of the competence of the FAZ cells to respond to ethylene signaling. Our results suggest that THyPRP acts as a master regulator of flower abscission in tomato, predominantly by playing a role in the regulation of the FAZ cell competence to respond to ethylene signals.

3.
J Exp Bot ; 66(5): 1355-68, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25504336

RESUMO

In vivo changes in the cytosolic pH of abscission zone (AZ) cells were visualized using confocal microscopic detection of the fluorescent pH-sensitive and intracellularly trapped dye, 2',7'-bis-(2-carboxyethyl)-5(and-6)-carboxyfluorescein (BCECF), driven by its acetoxymethyl ester. A specific and gradual increase in the cytosolic pH of AZ cells was observed during natural abscission of flower organs in Arabidopsis thaliana and wild rocket (Diplotaxis tenuifolia), and during flower pedicel abscission induced by flower removal in tomato (Solanum lycopersicum Mill). The alkalization pattern in the first two species paralleled the acceleration or inhibition of flower organ abscission induced by ethylene or its inhibitor 1-methylcyclopropene (1-MCP), respectively. Similarly, 1-MCP pre-treatment of tomato inflorescence explants abolished the pH increase in AZ cells and pedicel abscission induced by flower removal. Examination of the pH changes in the AZ cells of Arabidopsis mutants defective in both ethylene-induced (ctr1, ein2, eto4) and ethylene-independent (ida, nev7, dab5) abscission pathways confirmed these results. The data indicate that the pH changes in the AZ cells are part of both the ethylene-sensitive and -insensitive abscission pathways, and occur concomitantly with the execution of organ abscission. pH can affect enzymatic activities and/or act as a signal for gene expression. Changes in pH during abscission could occur via regulation of transporters in AZ cells, which might affect cytosolic pH. Indeed, four genes associated with pH regulation, vacuolar H(+)-ATPase, putative high-affinity nitrate transporter, and two GTP-binding proteins, were specifically up-regulated in tomato flower AZ following abscission induction, and 1-MCP reduced or abolished the increased expression.


Assuntos
Arabidopsis/crescimento & desenvolvimento , Brassicaceae/crescimento & desenvolvimento , Citosol/efeitos dos fármacos , Flores/crescimento & desenvolvimento , Solanum lycopersicum/crescimento & desenvolvimento , Arabidopsis/química , Arabidopsis/genética , Arabidopsis/metabolismo , Brassicaceae/química , Brassicaceae/genética , Brassicaceae/metabolismo , Ciclopropanos/metabolismo , Citosol/química , Citosol/metabolismo , Etilenos/metabolismo , Flores/química , Flores/genética , Flores/metabolismo , Regulação da Expressão Gênica de Plantas , Concentração de Íons de Hidrogênio , Solanum lycopersicum/química , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA