Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 75
Filtrar
1.
Nat Rev Clin Oncol ; 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38769449

RESUMO

Chimeric antigen receptor (CAR) T cell therapy has revolutionized the treatment of several haematological malignancies and is being investigated in patients with various solid tumours. Characteristic CAR T cell-associated toxicities such as cytokine-release syndrome (CRS) and immune effector cell-associated neurotoxicity syndrome (ICANS) are now well-recognized, and improved supportive care and management with immunosuppressive agents has made CAR T cell therapy safer and more feasible than it was when the first regulatory approvals of such treatments were granted in 2017. The increasing clinical experience with these therapies has also improved recognition of previously less well-defined toxicities, including movement disorders, immune effector cell-associated haematotoxicity (ICAHT) and immune effector cell-associated haemophagocytic lymphohistiocytosis-like syndrome (IEC-HS), as well as the substantial risk of infection in patients with persistent CAR T cell-induced B cell aplasia and hypogammaglobulinaemia. A more diverse selection of immunosuppressive and supportive-care pharmacotherapies is now being utilized for toxicity management, yet no universal algorithm for their application exists. As CAR T cell products targeting new antigens are developed, additional toxicities involving damage to non-malignant tissues expressing the target antigen are a potential hurdle. Continued prospective evaluation of toxicity management strategies and the design of less-toxic CAR T cell products are both crucial for ongoing success in this field. In this Review, we discuss the evolving understanding and clinical management of CAR T cell-associated toxicities.

2.
bioRxiv ; 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38644993

RESUMO

Multiple myeloma (MM), a cancer of bone marrow plasma cells, is the second-most common hematological malignancy. However, despite immunotherapies like chimeric antigen receptor (CAR)-T cells, relapse is nearly universal. The bone marrow (BM) microenvironment influences how MM cells survive, proliferate, and resist treatment. Yet, it is unclear which BM niches give rise to MM pathophysiology. Here, we present a 3D microvascularized culture system, which models the endosteal and perivascular bone marrow niches, allowing us to study MM-stroma interactions in the BM niche and model responses to therapeutic CAR-T cells. We demonstrated the prolonged survival of cell line-based and patient-derived multiple myeloma cells within our in vitro system and successfully flowed in donor-matched CAR-T cells. We then measured T cell survival, differentiation, and cytotoxicity against MM cells using a variety of analysis techniques. Our MM-on-a-chip system could elucidate the role of the BM microenvironment in MM survival and therapeutic evasion and inform the rational design of next-generation therapeutics. TEASER: A multiple myeloma model can study why the disease is still challenging to treat despite options that work well in other cancers.

4.
Mol Ther Methods Clin Dev ; 32(1): 101212, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38455264

RESUMO

T cells expressing anti-CD19 chimeric antigen receptors (CARs) have activity against chronic lymphocytic leukemia (CLL), but complete response rates range from 18% to 29%, so improvement is needed. Peripheral blood mononuclear cells (PBMCs) of CLL patients often contain high levels of CLL cells that can interfere with CAR T cell production, and T cells from CLL patients are prone to exhaustion and other functional defects. We previously developed an anti-CD19 CAR designated Hu19-CD828Z. Hu19-CD828Z has a binding domain derived from a fully human antibody and a CD28 costimulatory domain. We aimed to develop an optimized process for producing Hu19-CD828Z-expressing T cells (Hu19-CAR T) from PBMC of CLL patients. We determined that supplementing Hu19-CAR-T cultures with interleukin (IL)-7 + IL-15 had advantages over using IL-2, including greater accumulation of Hu19-CAR T cells during in vitro proliferation assays. We determined that positive selection with anti-CD4 and anti-CD8 magnetic beads was the optimal method of T cell purification because this method resulted in high T cell purity. We determined that anti-CD3/CD28 paramagnetic beads were the optimal T cell activation reagent. Finally, we developed a current good manufacturing practices-compliant clinical-scale protocol for producing Hu19-CAR T from PBMC of CLL patients. These Hu19-CAR T exhibited a full range of in vitro functions and eliminated leukemia from mice.

5.
Blood Adv ; 8(3): 802-814, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-37939262

RESUMO

ABSTRACT: New treatments are needed for relapsed and refractory CD30-expressing lymphomas. We developed a novel anti-CD30 chimeric antigen receptor (CAR), designated 5F11-28Z. Safety and feasibility of 5F11-28Z-transduced T cells (5F11-Ts) were evaluated in a phase 1 dose escalation clinical trial. Patients with CD30-expressing lymphomas received 300 mg/m2 or 500 mg/m2 of cyclophosphamide and 30 mg/m2 of fludarabine on days -5 to -3, followed by infusion of 5F11-Ts on day 0. Twenty-one patients received 5F11-T infusions. Twenty patients had classical Hodgkin lymphoma, and 1 had anaplastic large-cell lymphoma. Patients were heavily pretreated, with a median of 7 prior lines of therapy and substantial tumor burden, with a median metabolic tumor volume of 66.1 mL (range, 6.4-486.7 mL). The overall response rate was 43%; 1 patient achieved a complete remission. Median event-free survival was 13 weeks. Eleven patients had cytokine release syndrome (CRS; 52%). One patient had grade 3 CRS, and there was no grade 4/5 CRS. Neurologic toxicity was minimal. Nine patients (43%) had new-onset rashes. Two patients (9.5%) received extended courses of corticosteroids for prolonged severe rashes. Five patients (24%) had grade 3/4 cytopenias, with recovery time of ≥30 days, and 2 of these patients (9.5%) had prolonged cytopenias with courses complicated by life-threatening sepsis. The trial was halted early because of toxicity. Median peak blood CAR+ cells per µL was 26 (range, 1-513 cells per µL), but no infiltration of CAR+ cells was detected in lymph node biopsies. 5F11-Ts had low efficacy and substantial toxicities, which limit further development of 5F11-Ts. This trial was registered at www.clinicaltrials.gov as #NCT03049449.


Assuntos
Doença de Hodgkin , Linfoma Anaplásico de Células Grandes , Linfoma , Receptores de Antígenos Quiméricos , Humanos , Doença de Hodgkin/tratamento farmacológico , Linfoma Anaplásico de Células Grandes/terapia , Linfócitos T , Receptores de Antígenos Quiméricos/uso terapêutico
6.
Mol Ther ; 32(2): 503-526, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38155568

RESUMO

Multiple myeloma (MM) is a rarely curable malignancy of plasma cells. MM expresses B cell maturation antigen (BCMA). We developed a fully human anti-BCMA chimeric antigen receptor (CAR) with a heavy-chain-only antigen-recognition domain, a 4-1BB domain, and a CD3ζ domain. The CAR was designated FHVH33-CD8BBZ. We conducted the first-in-humans clinical trial of T cells expressing FHVH33-CD8BBZ (FHVH-T). Twenty-five patients with relapsed MM were treated. The stringent complete response rate (sCR) was 52%. Median progression-free survival (PFS) was 78 weeks. Of 24 evaluable patients, 6 (25%) had a maximum cytokine-release syndrome (CRS) grade of 3; no patients had CRS of greater than grade 3. Most anti-MM activity occurred within 2-4 weeks of FHVH-T infusion as shown by decreases in the rapidly changing MM markers serum free light chains, urine light chains, and bone marrow plasma cells. Blood CAR+ cell levels peaked during the time that MM elimination was occurring, between 7 and 15 days after FHVH-T infusion. C-C chemokine receptor type 7 (CCR7) expression on infusion CD4+ FHVH-T correlated with peak blood FHVH-T levels. Single-cell RNA sequencing revealed a shift toward more differentiated FHVH-T after infusion. Anti-CAR antibody responses were detected in 4 of 12 patients assessed. FHVH-T has powerful, rapid, and durable anti-MM activity.


Assuntos
Mieloma Múltiplo , Receptores de Antígenos Quiméricos , Humanos , Mieloma Múltiplo/genética , Receptores de Antígenos Quiméricos/metabolismo , Linfócitos T , Imunoterapia Adotiva , Medula Óssea/metabolismo
7.
Mol Ther Oncolytics ; 30: 132-149, 2023 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-37654973

RESUMO

To address CD19 loss from lymphoma after anti-CD19 chimeric antigen receptor (CAR) T cell therapy, we designed a bicistronic construct encoding an anti-CD19 CAR and an anti-CD20 CAR. We detected deletions from the expected bicistronic construct sequence in a minority of transcripts by mRNA sequencing. Loss of bicistronic construct transgene DNA was also detected. Deletions of sequence were present at much higher frequencies in transduced T cell mRNA versus gamma-retroviral vector RNA. We concluded that these deletions were caused by intramolecular template switching of the reverse transcriptase enzyme during reverse transcription of gamma-retroviral vector RNA into transgene DNA of transduced T cells. Intramolecular template switching was driven by repeated regions of highly similar nucleic acid sequence within CAR sequences. We optimized the sequence of the bicistronic CAR construct to reduce repeated regions of highly similar sequences. This optimization nearly eliminated sequence deletions. This work shows that repeated regions of highly similar nucleic acid sequence must be avoided in complex CAR constructs. We further optimized the bicistronic construct by lengthening the linker of the anti-CD20 single-chain variable fragment. This modification increased CD20-specific interleukin-2 release and reduced CD20-specific activation-induced cell death. We selected an optimized anti-CD19/CD20 bicistronic construct for clinical development.

8.
Nat Med ; 29(9): 2286-2294, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37592106

RESUMO

Idecabtagene vicleucel (ide-cel) is a B-cell-maturation antigen (BCMA)-directed chimeric antigen receptor T cell therapy. We performed a post hoc analysis of a single-arm phase 1 multicenter study in relapsed/refractory multiple myeloma (CRB-401) (n = 62; median follow-up, 18.1 months). The primary endpoint was safety outcomes, and secondary endpoints included overall response rate (ORR), complete response (CR) and very good partial response (VGPR). The study met its primary endpoint with low rates of grade 3/grade 4 cytokine release syndrome (6.5%) and neurotoxicity (1.6%). ORR was 75.8%; 64.5% achieved VGPR or better and 38.7% achieved CR or stringent CR. Among exploratory endpoints, median duration of response, progression-free survival (PFS) and overall survival were 10.3, 8.8 and 34.2 months, respectively, and ide-cel expansion in blood and bone marrow correlated with clinical efficacy and postinfusion reduction of soluble BCMA. Patients with PFS ≥ 18 months had more naive and less exhausted T cells in apheresis material and improved functional T cell phenotype in the drug product compared with those with less durable responses. These results confirm ide-cel safety, tolerability and efficacy and describe T cell qualities that correlate with durable response. Clinicaltrials.gov identifier : NCT02658929 .


Assuntos
Mieloma Múltiplo , Receptores de Antígenos Quiméricos , Humanos , Mieloma Múltiplo/terapia , Antígeno de Maturação de Linfócitos B , Seguimentos , Síndrome da Liberação de Citocina
10.
Nat Rev Clin Oncol ; 20(6): 359-371, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37055515

RESUMO

Chimeric antigen receptors (CAR) are engineered fusion proteins designed to target T cells to antigens expressed on cancer cells. CAR T cells are now an established treatment for patients with relapsed and/or refractory B cell lymphomas, B cell acute lymphoblastic leukaemia and multiple myeloma. At the time of this writing, over a decade of follow-up data are available from the initial patients who received CD19-targeted CAR T cells for B cell malignancies. Data on the outcomes of patients who received B cell maturation antigen (BCMA)-targeted CAR T cells for multiple myeloma are more limited owing to the more recent development of these constructs. In this Review, we summarize long-term follow-up data on efficacy and toxicities from patients treated with CAR T cells targeting CD19 or BCMA. Overall, the data demonstrate that CD19-targeted CAR T cells can induce prolonged remissions in patients with B cell malignancies, often with minimal long-term toxicities, and are probably curative for a subset of patients. By contrast, remissions induced by BCMA-targeted CAR T cells are typically more short-lived but also generally have only limited long-term toxicities. We discuss factors associated with long-term remissions, including the depth of initial response, malignancy characteristics predictive of response, peak circulating CAR levels and the role of lymphodepleting chemotherapy. We also discuss ongoing investigational strategies designed to improve the length of remission following CAR T cell therapy.


Assuntos
Mieloma Múltiplo , Receptores de Antígenos Quiméricos , Humanos , Imunoterapia Adotiva/efeitos adversos , Mieloma Múltiplo/terapia , Receptores de Antígenos de Linfócitos T , Antígeno de Maturação de Linfócitos B , Linfócitos T , Antígenos CD19
12.
Cytometry B Clin Cytom ; 104(4): 294-303, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36433814

RESUMO

BACKGROUND: Multiparametric flow cytometry (MFC) has become a powerful tool in minimal residual disease (MRD) detection in B-lymphoblastic leukemia/lymphoma (B-ALL). In the setting of targeted immunotherapy, B-ALL MRD detection often relies on alterative gating strategies, such as the utilization of CD22 and CD24. It is important to depict the full diversity of normal cell populations included in the alternative B-cell gating methods to avoid false-positive results. We describe two CD22-positive non-neoplastic cell populations in the peripheral blood (PB), including one progenitor population of uncertain lineage and one mature B-cell population, which are immunophenotypic mimics of B-ALL. METHODS: Using MFC, we investigated the prevalence and phenotypic profiles of both CD22-positive populations in 278 blood samples from 52 patients with B-ALL; these were obtained pre- and post-treatment with CD19 and/or CD22 CAR-T therapies. We further assessed whether these two populations in the blood were exclusively associated with B-ALL or recent anticancer therapies, by performing the same analysis on patients diagnosed with other hematological malignancies but in long-term MRD remission. RESULTS: The progenitor population and mature B-cell population were detected at low levels in PB of 61.5% and 44.2% of B-ALL patients, respectively. Both cell types showed distinctive and highly consistent antigen expression patterns that are reliably distinguishable from B-ALL. Furthermore, their presence is not restricted solely to B-ALL or recent therapy. CONCLUSIONS: Our findings aid in building a complete immunophenotypic profile of normal cell populations in PB, thereby preventing misdiagnosis of B-ALL MRD and inappropriate management.


Assuntos
Leucemia de Células B , Leucemia-Linfoma Linfoblástico de Células Precursoras B , Humanos , Neoplasia Residual/patologia , Citometria de Fluxo/métodos , Antígenos CD19 , Linfócitos B/patologia , Leucemia de Células B/patologia , Lectina 2 Semelhante a Ig de Ligação ao Ácido Siálico , Antígeno CD24
13.
J Transl Med ; 20(1): 514, 2022 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-36348415

RESUMO

BACKGROUND: Clinical CAR T-cell therapy using integrating vector systems represents a promising approach for the treatment of hematological malignancies. Lentiviral and γ-retroviral vectors are the most commonly used vectors in the manufacturing process. However, the integration pattern of these viral vectors and subsequent effect on CAR T-cell products is still unclear. METHODS: We used a modified viral integration sites analysis (VISA) pipeline to evaluate viral integration events around the whole genome in pre-infusion CAR T-cell products. We compared the differences of integration pattern between lentiviral and γ-retroviral products. We also explored whether the integration sites correlated with clinical outcomes. RESULTS: We found that γ-retroviral vectors were more likely to insert than lentiviral vectors into promoter, untranslated, and exon regions, while lentiviral vector integration sites were more likely to occur in intron and intergenic regions. Some integration events affected gene expression at the transcriptional and post-transcriptional level. Moreover, γ-retroviral vectors showed a stronger impact on the host transcriptome. Analysis of individuals with different clinical outcomes revealed genes with differential enrichment of integration events. These genes may affect biological functions by interrupting amino acid sequences and generating abnormal proteins, instead of by affecting mRNA expression. These results suggest that vector integration is associated with CAR T-cell efficacy and clinical responses. CONCLUSION: We found differences in integration patterns, insertion hotspots and effects on gene expression vary between lentiviral and γ-retroviral vectors used in CAR T-cell products and established a foundation upon which we can conduct further analyses.


Assuntos
Lentivirus , Retroviridae , Humanos , Lentivirus/genética , Retroviridae/genética , Vetores Genéticos , Integração Viral , Linfócitos T , DNA
15.
Leuk Lymphoma ; 63(8): 1849-1860, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35389319

RESUMO

Prolonged myelosuppression after chimeric antigen receptor (CAR) T-cell therapy is common and poorly understood. A retrospective analysis of 43 patients was conducted to investigate factors contributing to CAR T-cell-related cytopenias. Thirty-five patients were evaluable for analysis of delayed cytopenias occurring after initial hematologic recovery. Time to hematologic recovery (TTHR) was defined as number of days after CAR T-cell infusion for recovery to hemoglobin ≥8.0 g/dL, platelets ≥50.0 k/µL, and neutrophil count ≥1.0 k/µL without transfusions or growth factors for 7 days. Baseline percent bone marrow (BM) malignancy involvement correlated with TTHR (p = .0047). Patients with grades 3-4 cytokine-release syndrome (CRS) had longer TTHR than those with grades 0-2 CRS (p = .0479). Patients who developed prolonged or delayed cytopenias after anti-BCMA CAR T cells had a higher percentage of BM aspirate CAR+ cells at 2 months (n = 10; p = .0159).


Assuntos
Anemia , Leucopenia , Trombocitopenia , Anemia/etiologia , Humanos , Imunoterapia Adotiva/efeitos adversos , Estudos Retrospectivos , Fatores de Risco , Linfócitos T , Trombocitopenia/etiologia
16.
Crit Care Med ; 50(1): 81-92, 2022 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-34259446

RESUMO

OBJECTIVES: To report the epidemiology, treatments, and outcomes of adult patients admitted to the ICU after cytokine release syndrome or immune effector cell-associated neurotoxicity syndrome. DESIGN: Retrospective cohort study. SETTING: Nine centers across the U.S. part of the chimeric antigen receptor-ICU initiative. PATIENTS: Adult patients treated with chimeric antigen receptor T-cell therapy who required ICU admission between November 2017 and May 2019. INTERVENTIONS: Demographics, toxicities, specific interventions, and outcomes were collected. RESULTS: One-hundred five patients treated with axicabtagene ciloleucel required ICU admission for cytokine release syndrome or immune effector cell-associated neurotoxicity syndrome during the study period. At the time of ICU admission, the majority of patients had grade 3-4 toxicities (66.7%); 15.2% had grade 3-4 cytokine release syndrome and 64% grade 3-4 immune effector cell-associated neurotoxicity syndrome. During ICU stay, cytokine release syndrome was observed in 77.1% patients and immune effector cell-associated neurotoxicity syndrome in 84.8% of patients; 61.9% patients experienced both toxicities. Seventy-nine percent of patients developed greater than or equal to grade 3 toxicities during ICU stay, however, need for vasopressors (18.1%), mechanical ventilation (10.5%), and dialysis (2.9%) was uncommon. Immune Effector Cell-Associated Encephalopathy score less than 3 (69.7%), seizures (20.2%), status epilepticus (5.7%), motor deficits (12.4%), and cerebral edema (7.9%) were more prevalent. ICU mortality was 8.6%, with only three deaths related to cytokine release syndrome or immune effector cell-associated neurotoxicity syndrome. Median overall survival time was 10.4 months (95% CI, 6.64-not available mo). Toxicity grade or organ support had no impact on overall survival; higher cumulative corticosteroid doses were associated to decreased overall and progression-free survival. CONCLUSIONS: This is the first study to describe a multicenter cohort of patients requiring ICU admission with cytokine release syndrome or immune effector cell-associated neurotoxicity syndrome after chimeric antigen receptor T-cell therapy. Despite severe toxicities, organ support and in-hospital mortality were low in this patient population.


Assuntos
Produtos Biológicos/toxicidade , Estado Terminal , Síndrome da Liberação de Citocina/induzido quimicamente , Imunoterapia Adotiva/efeitos adversos , Síndromes Neurotóxicas/etiologia , Receptores de Antígenos Quiméricos , Adulto , Idoso , Comorbidade , Síndrome da Liberação de Citocina/mortalidade , Síndrome da Liberação de Citocina/terapia , Feminino , Humanos , Unidades de Terapia Intensiva/estatística & dados numéricos , Masculino , Pessoa de Meia-Idade , Síndromes Neurotóxicas/mortalidade , Síndromes Neurotóxicas/terapia , Gravidade do Paciente , Estudos Retrospectivos , Fatores Sociodemográficos , Estados Unidos
17.
J Infect Dis ; 225(7): 1118-1123, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-34940844

RESUMO

B-cell-depleting therapies may lead to prolonged disease and viral shedding in individuals infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and this viral persistence raises concern for viral evolution. We report sequencing of early and late samples from a 335-day infection in an immunocompromised patient. The virus accumulated a unique deletion in the amino-terminal domain of the spike protein, and complete deletion of ORF7b and ORF8, the first report of its kind in an immunocompromised patient. Unique viral mutations found in this study highlight the importance of analyzing viral evolution in protracted SARS-CoV-2 infection, especially in immunosuppressed hosts.


Assuntos
COVID-19 , SARS-CoV-2 , Linfócitos B , Humanos , Hospedeiro Imunocomprometido , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/genética , Eliminação de Partículas Virais
18.
medRxiv ; 2021 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-34642697

RESUMO

BACKGROUND: B-cell depleting therapies may lead to protracted disease and prolonged viral shedding in individuals infected with SARS-CoV-2. Viral persistence in the setting of immunosuppression raises concern for viral evolution. METHODS: Amplification of sub-genomic transcripts for the E gene (sgE) was done on nasopharyngeal samples over the course of 355 days in a patient infected with SARS-CoV-2 who had previously undergone CAR T cell therapy and had persistently positive SARS-CoV-2 nasopharyngeal swabs. Whole genome sequencing was performed on samples from the patient's original presentation and 10 months later. RESULTS: Over the course of almost a year, the virus accumulated a unique in-frame deletion in the amino-terminal domain of the spike protein, and complete deletion of ORF7b and ORF8, the first report of its kind in an immunocompromised patient. Also, minority variants that were identified in the early samples-reflecting the heterogeneity of the initial infection-were found to be fixed late in the infection. Remdesivir and high-titer convalescent plasma treatment were given, and the infection was eventually cleared after 335 days of infection. CONCLUSIONS: The unique viral mutations found in this study highlight the importance of analyzing viral evolution in protracted SARS-CoV-2 infection, especially in immunosuppressed hosts, and the implication of these mutations in the emergence of viral variants. SUMMARY: We report an immunocompromised patient with persistent symptomatic SARS-CoV-2 infection for 335 days. During this time, the virus accumulated a unique in-frame deletion in the spike, and a complete deletion of ORF7b and ORF8 which is the first report of its kind in an immunocompromised patient.

19.
Blood Adv ; 5(23): 5312-5322, 2021 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-34619768

RESUMO

Infections are a known complication of chimeric antigen receptor (CAR) T-cell therapy with data largely emerging from CD19 CAR T-cell targeting. As CAR T-cell therapy continues to evolve, infection risks and management thereof will become increasingly important to optimize outcomes across the spectrum of antigens and disease targeted. We retrospectively characterized infectious complications occurring in 162 children and adults treated among 5 phase 1 CAR T-cell clinical trials. Trials included targeting of CD19, CD22, disialoganglioside (GD2) or B-cell maturation antigen (BCMA). Fifty-three patients (32.7%) had 76 infections between lymphocyte depleting (LD) chemotherapy and day 30 (D30); with the majority of infections (61, 80.3%) occurring between day 0 (D0) and D30. By trial, the highest proportion of infections was seen with CD22 CAR T cells (n = 23/53; 43.4%), followed by BCMA CAR T cells (n = 9/24; 37.5%). By disease, patients with multiple myeloma had the highest proportion of infections (9/24; 37.5%) followed by acute lymphoblastic leukemia (36/102; 35.3%). Grade 4 infections were rare (n = 4; 2.5%). Between D0 and D30, bacteremia and bacterial site infections were the most common infection type. In univariate analysis, increasing prior lines of therapy, recent infection within 100 days of LD chemotherapy, corticosteroid or tocilizumab use, and fever and neutropenia were associated with a higher risk of infection. In a multivariable analysis, only prior lines of therapy and recent infection were associated with higher risk of infection. In conclusion, we provide a broad overview of infection risk within the first 30 days post infusion across a host of multiple targets and diseases, elucidating both unique characteristics and commonalities highlighting aspects important to improving patient outcomes.


Assuntos
Imunoterapia Adotiva , Mieloma Múltiplo , Antígenos CD19 , Humanos , Estudos Retrospectivos , Linfócitos T
20.
Nat Rev Clin Oncol ; 18(11): 715-727, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34230645

RESUMO

Chimeric antigen receptors (CARs) are engineered proteins designed to target T cells to cancer cells. To effectively activate the T cells in which they are expressed, CARs must contain a costimulatory domain. The CAR T cell products approved for the treatment of B cell lymphomas and/or acute lymphoblastic leukaemia or multiple myeloma incorporate either a CD28-derived or a 4-1BB-derived costimulatory domain. Almost all other clinically tested CARs also use costimulatory domains from CD28 or 4-1BB. In preclinical experiments, cytokine release is usually greater with CARs containing CD28 versus 4-1BB costimulatory domains; however, constructs with either domain confer similar anticancer activity in mouse models. T cell products expressing CARs with either CD28 or 4-1BB costimulatory domains have been highly efficacious in patients with relapsed haematological malignancies, with anti-CD19 products having similar activity regardless of the source of the costimulatory domain. In large-cohort clinical trials, the rates of neurological toxicities have been higher with CD28-costimulated CARs, although this finding is probably the result of a combination of factors rather than due to CD28 signalling alone. Future preclinical and clinical research should aim to compare different costimulatory domains while controlling for confounding variables. Herein, we provide an overview of T cell costimulation by CD28 and 4-1BB and, using the available preclinical and clinical data, compare the efficacy and toxicity profiles associated with CARs containing either costimulatory domain.


Assuntos
Antígenos CD28/metabolismo , Receptores de Antígenos Quiméricos/metabolismo , Membro 9 da Superfamília de Receptores de Fatores de Necrose Tumoral/metabolismo , Feminino , Humanos , Masculino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA