Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Bacteriol ; 191(10): 3328-38, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19304844

RESUMO

Prevotella ruminicola 23 is an obligate anaerobic bacterium in the phylum Bacteroidetes that contributes to hemicellulose utilization within the bovine rumen. To gain insight into the cellular machinery that this organism elaborates to degrade the hemicellulosic polymer xylan, we identified and cloned a gene predicted to encode a bifunctional xylanase-ferulic acid esterase (xyn10D-fae1A) and expressed the recombinant protein in Escherichia coli. Biochemical analysis of purified Xyn10D-Fae1A revealed that this protein possesses both endo-beta-1,4-xylanase and ferulic acid esterase activities. A putative glycoside hydrolase (GH) family 3 beta-D-glucosidase gene, with a novel PA14-like insertion sequence, was identified two genes downstream of xyn10D-fae1A. Biochemical analyses of the purified recombinant protein revealed that the putative beta-D-glucosidase has activity for pNP-beta-D-xylopyranoside, pNP-alpha-L-arabinofuranoside, and xylo-oligosaccharides; thus, the gene was designated xyl3A. When incubated in combination with Xyn10D-Fae1A, Xyl3A improved the release of xylose monomers from a hemicellulosic xylan substrate, suggesting that these two enzymes function synergistically to depolymerize xylan. Directed mutagenesis studies of Xyn10D-Fae1A mapped the catalytic sites for the two enzymatic functionalities to distinct regions within the polypeptide sequence. When a mutation was introduced into the putative catalytic site for the xylanase domain (E280S), the ferulic acid esterase activity increased threefold, which suggests that the two catalytic domains for Xyn10D-Fae1A are functionally coupled. Directed mutagenesis of conserved residues for Xyl3A resulted in attenuation of activity, which supports the assignment of Xyl3A as a GH family 3 beta-D-xylosidase.


Assuntos
Proteínas de Bactérias/metabolismo , Hidrolases de Éster Carboxílico/metabolismo , Família Multigênica/genética , Prevotella ruminicola/enzimologia , Prevotella ruminicola/genética , Xilosidases/metabolismo , Proteínas de Bactérias/genética , Ácidos Cafeicos/metabolismo , Hidrolases de Éster Carboxílico/genética , Cromatografia em Gel , Endo-1,4-beta-Xilanases/genética , Endo-1,4-beta-Xilanases/metabolismo , Glicosídeos/metabolismo , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Mutação , Prevotella ruminicola/metabolismo , Especificidade por Substrato , Xilosidases/genética
2.
J Biol Chem ; 280(51): 41852-63, 2005 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-16257971

RESUMO

Clamp loaders orchestrate the switch from distributive to processive DNA synthesis. Their importance in cellular processes is underscored by their conservation across all forms of life. Here, we describe a new form of clamp loader from the archaeon Methanosarcina acetivorans. Unlike previously described archaeal clamp loaders, which are composed of one small subunit and one large subunit, the M. acetivorans clamp loader comprises two similar small subunits (M. acetivorans replication factor C small subunit (MacRFCS)) and one large subunit (MacRFCL). The relatedness of the archaeal and eukaryotic clamp loaders (which are made up of four similar small subunits and one large subunit) suggests that the M. acetivorans clamp loader may be an intermediate form in the archaeal/eukaryotic sister lineages. The clamp loader complex reconstituted from the three subunits MacRFCS1, MacRFCS2, and MacRFCL stimulated DNA synthesis by a cognate DNA polymerase in the presence of its sliding clamp. We used site-directed mutagenesis in the Walker A and SRC motifs to examine the contribution of each subunit to the function of the M. acetivorans clamp loader. Although mutations in MacRFCL and MacRFCS2 did not impair clamp loading activity, any mutant clamp loader harboring a mutation in MacRFCS1 was devoid of the clamp loading property. Mac-RFCS1 is therefore critical to the clamp loading activity of the M. acetivorans clamp loader. It is our anticipation that the discovery of this unique replication factor C homolog will lead to critical insights into the evolution of more complex clamp loaders from simpler ones as more complex organisms evolved in the archaeal/eukaryotic sister lineages.


Assuntos
Methanosarcina/metabolismo , Sequência de Aminoácidos , Sequência de Bases , Primers do DNA , Genes Arqueais , Methanosarcina/genética , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Plasmídeos , Homologia de Sequência de Aminoácidos
3.
J Bacteriol ; 187(21): 7481-91, 2005 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-16237031

RESUMO

Two different genes encoding glutamine synthetase type I (GSI) and GSIII were identified in the genome sequence of R. albus 8. The identity of the GSIII protein was confirmed by the presence of its associated conserved motifs. The glnN gene, encoding the GSIII, was cloned and expressed in Escherichia coli BL21 cells. The recombinant protein was purified and subjected to biochemical and physical analyses. Subunit organization suggested a protein present in solution as both monomers and oligomers. Kinetic studies using the forward and the gamma-glutamyl transferase (gamma-GT) assays were carried out. Mutations that changed conserved glutamic acid residues to alanine in the four GSIII motifs resulted in drastic decreases in GS activity using both assays, except for an E380A mutation, which rather resulted in an increase in activity in the forward assay compared to the wild-type protein. Reduced GSIII activity was also exhibited by mutating, individually, two lysines (K308 and K318) located in the putative nucleotide-binding site to alanine. Most importantly, the presence of mRNA transcripts of the glnN gene in R. albus 8 cells grown under ammonia limiting conditions, whereas little or no transcript was detected in cells grown under ammonia sufficient conditions, suggested an important role for the GSIII in the nitrogen metabolism of R. albus 8. Furthermore, the mutational studies on the conserved GSIII motifs demonstrated, for the first time, their importance in the structure and/or function of a GSIII protein.


Assuntos
Análise Mutacional de DNA , Glutamato-Amônia Ligase/genética , Glutamato-Amônia Ligase/metabolismo , Ruminococcus/enzimologia , Motivos de Aminoácidos , Sequência de Aminoácidos , Substituição de Aminoácidos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Clonagem Molecular , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Glutamato-Amônia Ligase/química , Glutamato-Amônia Ligase/isolamento & purificação , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Mutação de Sentido Incorreto , Subunidades Proteicas , RNA Bacteriano/análise , RNA Mensageiro/análise , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Ruminococcus/genética , Homologia de Sequência de Aminoácidos
4.
Integr Comp Biol ; 42(2): 327-31, 2002 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21708725

RESUMO

Molecular tools based on small subunit (SSU) rDNA gene sequences offer a powerful and rapid tool for the analysis of complex microbial communities found in the gastrointestinal tracts (GIT) of food animal species. Extensive comparative sequence analysis of SSU rRNA molecules representing a wide diversity of organisms shows that different regions of the molecule vary in sequence conservation. Oligonucleotides complementing regions of universally conversed SSU rRNA sequences are used as universal probes, while those complementing more variable regions of sequence are useful as selective probes targeting species, genus, or phylogenetic groups. Different approaches derive different information and this is highly dependent on the type of target nucleic acid employed and the conceptual and technical basis used for nucleic acid probe design. Generally these approaches can be divided into DNA-based methods employing empirically characterized probes and rRNA-based methods based on comparative sequence analysis for design and interpretation of "rational" probes. Polymerase chain reaction (PCR) based techniques can also be applied to the analysis of microbial communities in the GIT. Direct cloning of SSU rDNA genes amplified from these complex communities can be used to determine the extent of diversity in these GIT communities. Denaturing gradient gel electrophoresis (DGGE) is another powerful tool for profiling microbial diversity of microbial communities in GI tracts. Sequence analysis of the excised DGGE amplicons can then be used to presumptively identify predominant bacterial species. Examples of how these molecular approaches are being used to study the microbial diversity of communities from steers fed different diets, swine fed probiotics, and Atlantic salmon fed aquaculture diets are presented.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA