Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Plant Physiol ; 159(4): 1713-29, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22685169

RESUMO

Integrative comparative analyses of transcript and metabolite levels from climacteric and nonclimacteric fruits can be employed to unravel the similarities and differences of the underlying regulatory processes. To this end, we conducted combined gas chromatography-mass spectrometry and heterologous microarray hybridization assays in tomato (Solanum lycopersicum; climacteric) and pepper (Capsicum chilense; nonclimacteric) fruits across development and ripening. Computational methods from multivariate and network-based analyses successfully revealed the difference between the covariance structures of the integrated data sets. Moreover, our results suggest that both fruits have similar ethylene-mediated signaling components; however, their regulation is different and may reflect altered ethylene sensitivity or regulators other than ethylene in pepper. Genes involved in ethylene biosynthesis were not induced in pepper fruits. Nevertheless, genes downstream of ethylene perception such as cell wall metabolism genes, carotenoid biosynthesis genes, and the never-ripe receptor were clearly induced in pepper as in tomato fruit. While signaling sensitivity or actual signals may differ between climacteric and nonclimacteric fruit, the evidence described here suggests that activation of a common set of ripening genes influences metabolic traits. Also, a coordinate regulation of transcripts and the accumulation of key organic acids, including malate, citrate, dehydroascorbate, and threonate, in pepper fruit were observed. Therefore, the integrated analysis allows us to uncover additional information for the comprehensive understanding of biological events relevant to metabolic regulation during climacteric and nonclimacteric fruit development.


Assuntos
Capsicum/crescimento & desenvolvimento , Capsicum/genética , Redes Reguladoras de Genes/genética , Metaboloma/genética , Solanum lycopersicum/crescimento & desenvolvimento , Solanum lycopersicum/genética , Transcriptoma/genética , Capsicum/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Genes de Plantas/genética , Solanum lycopersicum/metabolismo , Redes e Vias Metabólicas/genética , Metabolômica , Reguladores de Crescimento de Plantas/biossíntese , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Especificidade da Espécie
2.
J Plant Physiol ; 169(5): 437-43, 2012 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-22226341

RESUMO

Although the branched-chain amino acids (BCAAs) are essential components of the mammalian diet, our current understanding of their metabolism in plants is still limited. It is however well known that the branched-chain amino acid transaminases (BCATs) play a crucial role in both the synthesis and degradation of the BCAAs leucine, isoleucine and valine. We previously characterized the BCAT gene family in tomato, revealing it to be highly diverse in subcellular localization, substrate preference, and expression. Here we performed further characterization of this family and provide evidence for the presence of another member, BCAT7. On mapping the chromosomal location of this enzyme, it was possible to define the exact chromosome map position of the gene. Although in Arabidopsis thaliana the AtBCAT7 has been considered a pseudo-gene, quantitative evaluation of the expression levels of this gene revealed that the expression profile of the BCAT7 in different tissues of tomato (Solanum lycopersicum cv. M82) plants is highly variable with the highest expression found in developed flowers. By using a C-terminal E-GFP gene fusion we demonstrate that the BCAT7 is extraplastidial and in combination with the kinetic characterization of BCAT7 our results suggest that it most likely operates in BCAA degradation in vivo and support our hypothesis of another functional member of BCAT family. The combined data presented are discussed within the context of BCAA metabolism and its functions in higher plants.


Assuntos
Solanum lycopersicum/enzimologia , Transaminases/metabolismo , Sequência de Aminoácidos , Aminoácidos de Cadeia Ramificada/biossíntese , Aminoácidos de Cadeia Ramificada/genética , Aminoácidos de Cadeia Ramificada/metabolismo , Arabidopsis/genética , Mapeamento Cromossômico , Regulação Enzimológica da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Isoleucina/metabolismo , Leucina/metabolismo , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo , Dados de Sequência Molecular , Reguladores de Crescimento de Plantas/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Homologia de Sequência de Aminoácidos , Transaminases/genética , Valina/metabolismo
3.
Mol Plant ; 5(2): 366-75, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22199237

RESUMO

The branched-chain amino acid transaminases (BCATs) have a crucial role in metabolism of the branched-chain amino acids leucine, isoleucine, and valine. These enzymes catalyze the last step of synthesis and the initial step of degradation of these amino acids. Although the biosynthetic pathways of branched chain amino acids in plants have been extensively investigated and a number of genes have been characterized, their catabolism in plants is not yet completely understood. We previously characterized the branched chain amino acid transaminase gene family in tomato, revealing both the subcellular localization and kinetic properties of the enzymes encoded by six genes. Here, we examined possible functions of the enzymes during fruit development. We further characterized transgenic plants differing in the expression of branched chain amino acid transaminases 1 and 3, evaluating the rates of respiration in fruits deficient in BCAT1 and the levels of volatiles in lines overexpressing either BCAT1 or BCAT3. We quantitatively tested, via precursor and isotope feeding experiments, the importance of the branched chain amino acids and their corresponding keto acids in the formation of fruit volatiles. Our results not only demonstrate for the first time the importance of branched chain amino acids in fruit respiration, but also reveal that keto acids, rather than amino acids, are the likely precursors for the branched chain flavor volatiles.


Assuntos
Aminoácidos de Cadeia Ramificada/metabolismo , Frutas/metabolismo , Solanum lycopersicum/metabolismo , Vias Biossintéticas , Respiração Celular , Frutas/genética , Leucina/metabolismo , Solanum lycopersicum/genética , Modelos Biológicos , Plantas Geneticamente Modificadas , Volatilização
4.
J Exp Bot ; 62(11): 3895-906, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21436187

RESUMO

Previous studies of the genetic architecture of fruit metabolic composition have allowed us to identify four strongly conserved co-ordinate quantitative trait loci (QTL) for the branched-chain amino acids (BCAAs). This study has been extended here to encompass the other 23 enzymes described to be involved in the pathways of BCAA synthesis and degradation. On coarse mapping the chromosomal location of these enzymes, it was possible to define the map position of 24 genes. Of these genes eight co-localized, or mapped close to BCAA QTL including those encoding ketol-acid reductoisomerase (KARI), dihydroxy-acid dehydratase (DHAD), and isopropylmalate dehydratase (IPMD). Quantitative evaluation of the expression levels of these genes revealed that the S. pennellii allele of IPMD demonstrated changes in the expression level of this gene, whereas those of KARI and DHAD were invariant across the genotypes. Whilst the antisense inhibition of IPMD resulted in increased BCAA, the antisense inhibition of neither KARI nor DHAD produced a clear effect in fruit BCAA contents. The results are discussed both with respect to the roles of these specific enzymes within plant amino acid metabolism and within the context of current understanding of the regulation of plant branched-chain amino acid metabolism.


Assuntos
Solanum lycopersicum/enzimologia , Solanum lycopersicum/genética , Solanum/enzimologia , Solanum/genética , Aminoácidos de Cadeia Ramificada/biossíntese , Aminoácidos de Cadeia Ramificada/química , Frutas/enzimologia , Frutas/genética , Regulação da Expressão Gênica de Plantas , Hidroliases/genética , Hidroliases/metabolismo , Cetol-Ácido Redutoisomerase/genética , Cetol-Ácido Redutoisomerase/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/enzimologia , Plantas Geneticamente Modificadas/genética , Locos de Características Quantitativas/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa
5.
Plant Physiol ; 153(3): 925-36, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20435740

RESUMO

Branched-chain amino acids (BCAAs) are synthesized in plants from branched-chain keto acids, but their metabolism is not completely understood. The interface of BCAA metabolism lies with branched-chain aminotransferases (BCAT) that catalyze both the last anabolic step and the first catabolic step. In this study, six BCAT genes from the cultivated tomato (Solanum lycopersicum) were identified and characterized. SlBCAT1, -2, -3, and -4 are expressed in multiple plant tissues, while SlBCAT5 and -6 were undetectable. SlBCAT1 and -2 are located in the mitochondria, SlBCAT3 and -4 are located in chloroplasts, while SlBCAT5 and -6 are located in the cytosol and vacuole, respectively. SlBCAT1, -2, -3, and -4 were able to restore growth of Escherichia coli BCAA auxotrophic cells, but SlBCAT1 and -2 were less effective than SlBCAT3 and -4 in growth restoration. All enzymes were active in the forward (BCAA synthesis) and reverse (branched-chain keto acid synthesis) reactions. SlBCAT3 and -4 exhibited a preference for the forward reaction, while SlBCAT1 and -2 were more active in the reverse reaction. While overexpression of SlBCAT1 or -3 in tomato fruit did not significantly alter amino acid levels, an expression quantitative trait locus on chromosome 3, associated with substantially higher expression of Solanum pennellii BCAT4, did significantly increase BCAA levels. Conversely, antisense-mediated reduction of SlBCAT1 resulted in higher levels of BCAAs. Together, these results support a model in which the mitochondrial SlBCAT1 and -2 function in BCAA catabolism while the chloroplastic SlBCAT3 and -4 function in BCAA synthesis.


Assuntos
Família Multigênica , Solanum lycopersicum/enzimologia , Solanum lycopersicum/genética , Transaminases/genética , Aminoácidos de Cadeia Ramificada/biossíntese , Aminoácidos de Cadeia Ramificada/química , Vias Biossintéticas , Cromatografia Líquida de Alta Pressão , Clonagem Molecular , DNA Complementar/genética , Escherichia coli/crescimento & desenvolvimento , Perfilação da Expressão Gênica , Regulação Enzimológica da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Teste de Complementação Genética , Endogamia , Cinética , Especificidade de Órgãos/genética , Mapeamento Físico do Cromossomo , Plantas Geneticamente Modificadas , Transporte Proteico , Locos de Características Quantitativas/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Reprodutibilidade dos Testes , Homologia de Sequência de Aminoácidos , Frações Subcelulares/enzimologia , Transaminases/metabolismo
6.
Plant Cell ; 15(8): 1781-94, 2003 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-12897252

RESUMO

Thaxtomin A is a phytotoxin produced by Streptomyces scabies and other Streptomyces species, the causative agents of common scab disease in potato and other taproot crops. At nanomolar concentrations, thaxtomin causes dramatic cell swelling, reduced seedling growth, and inhibition of cellulose synthesis in Arabidopsis. We identified a mutant of Arabidopsis, designated txr1, that exhibits increased resistance to thaxtomin as a result of a decrease in the rate of toxin uptake. The TXR1 gene was identified by map-based cloning and found to encode a novel, small protein with no apparent motifs or organelle-targeting signals. The protein, which has homologs in all fully sequenced eukaryotic genomes, is expressed in all tissues and during all developmental stages analyzed. Microarray transcript profiling of some 14,300 genes revealed two stomatin-like genes that were expressed differentially in the txr1 mutant and the wild type. We propose that TXR1 is a regulator of a transport mechanism.


Assuntos
Arabidopsis/efeitos dos fármacos , Arabidopsis/genética , Indóis/toxicidade , Piperazinas/toxicidade , Sequência de Aminoácidos , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Sequência de Bases , Transporte Biológico Ativo/genética , Celulose/biossíntese , DNA de Plantas/genética , Resistência a Medicamentos/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Indóis/isolamento & purificação , Indóis/farmacocinética , Dados de Sequência Molecular , Mutação , Análise de Sequência com Séries de Oligonucleotídeos , Fenótipo , Piperazinas/isolamento & purificação , Piperazinas/farmacocinética , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Homologia de Sequência de Aminoácidos , Streptomyces/química , Streptomyces/patogenicidade
7.
Plant Physiol ; 132(1): 174-84, 2003 May.
Artigo em Inglês | MEDLINE | ID: mdl-12746523

RESUMO

Single amino acid substitutions at either of two crucial positions in acetolactate synthase (ALS) result in a chlorsulfuron-insensitive form of this enzyme and, as a consequence, a herbicide-resistant phenotype. Here, we describe the successful in vivo targeting of endogenous tobacco (Nicotiana tabacum) ALS genes using chimeric RNA/DNA and all-DNA oligonucleotides at two different locations. Similar number of conversion events with two different chimeras indicates the absence of restricting influence of genomic target sequence on the gene repair in tobacco. Chlorsulfuron-resistant plants were regenerated from calli after mesophyll protoplast electroporation or leaf tissue particle bombardment with these specifically constructed chimeras. Sequence analysis and enzyme assays proved the resulting alterations to ALS at both DNA and protein levels. Furthermore, foliar application of chlorsulfuron confirmed the development of resistant phenotypes. Lines with proline-196-alanine, threonine, glutamine, or serine substitutions or with tryptophan-573-leucine substitutions were highly resistant at both cellular and whole plant levels, whereas lines with proline-196-leucine substitutions were less resistant. The stability of these modifications was demonstrated by the continuous growth of calli on chlorsulfuron-containing medium and by the transmission of herbicide resistance to progeny in a Mendelian manner. Ability of haploid state to promote chimera-mediated conversions is discussed.


Assuntos
Acetolactato Sintase/genética , Nicotiana/genética , Sulfonamidas , Acetolactato Sintase/metabolismo , Sequência de Aminoácidos , Substituição de Aminoácidos , Sequência de Bases , DNA/genética , DNA de Plantas/química , DNA de Plantas/genética , Resistência a Medicamentos/genética , Marcação de Genes/métodos , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Oligonucleotídeos/genética , Fenótipo , RNA/genética , Análise de Sequência de DNA , Homologia de Sequência do Ácido Nucleico , Nicotiana/efeitos dos fármacos , Nicotiana/enzimologia , Triazinas/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA