Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38649084

RESUMO

Melittin is a powerful toxin present in honeybee venom that is active in a wide range of animals, from insects to humans. Melittin exerts numerous biological, toxicological, and pharmacological effects, the most important of which is destruction of the cell membrane. The phospholipase activity of melittin and its ability to activate phospholipases in the venom contribute to these actions. Using analytical methods, we discovered that the honeybee Apis mellifera produces melittin not only in the venom gland but also in its fat body cells, which remain resistant to this toxin's effects. We suggest that melittin acts as an anti-bacterial agent, since its gene expression is significantly upregulated when honeybees are infected with Escherichia coli and Listeria monocytogenes bacteria; additionally, melittin effectively kills these bacteria in the disc diffusion test. We hypothesize that the chemical and physicochemical properties of the melittin molecule (hydrophilicity, lipophilicity, and capacity to form tetramers) in combination with reactive conditions (melittin concentration, salt concentration, pH, and temperature) are responsible for the targeted destruction of bacterial cells and apparent tolerance towards own tissue cells. Considering that melittin is an important current and, importantly, potential broad-spectrum medication, a thorough understanding of the observed phenomena may significantly increase its use in clinical practice.


Assuntos
Antibacterianos , Venenos de Abelha , Escherichia coli , Corpo Adiposo , Meliteno , Animais , Antibacterianos/farmacologia , Antibacterianos/toxicidade , Venenos de Abelha/farmacologia , Venenos de Abelha/toxicidade , Abelhas , Escherichia coli/efeitos dos fármacos , Corpo Adiposo/metabolismo , Proteínas de Insetos/metabolismo , Listeria monocytogenes/efeitos dos fármacos , Meliteno/farmacologia , Meliteno/toxicidade
2.
Artigo em Inglês | MEDLINE | ID: mdl-37196854

RESUMO

In this study, the biochemical and physiological features of the firebug Pyrrhocoris apterus were investigated to understand the impact of the honeybee Apis mellifera venom on them using physiological methods (mortality, total level of metabolism), biochemical methods (ELISA, mass spectrometry, polyacrylamide gel electrophoresis, spectrophotometry) and molecular methods (real-time PCR). Together, the obtained findings suggest that venom injection increased the level of adipokinetic hormone (AKH) in the CNS of P. apterus, indicating that this hormone plays a key role in activating defence responses. Furthermore, histamine levels in the gut increased significantly after envenomation and did not seem to be modulated by AKH. In contrast, histamine levels in the haemolymph increased after treatment with AKH and AKH + venom. In addition, we found that vitellogenin levels in haemolymph decreased in both males and females after venom application. Lipids, which are the main energy metabolites used by Pyrrhocoris, were significantly exhausted from the haemolymph after the administration of venom and the co-application with AKH reversed this effect. However, we did not find much influence on the effect of digestive enzymes after the injection of venom. Our research has highlighted the noticeable effect of bee venom on P. apterus' body and provided new insights into the role of AKH in controlling defensive responses. However, it is also likely that there will be alternative defence mechanisms.


Assuntos
Venenos de Abelha , Heterópteros , Hormônios de Inseto , Feminino , Masculino , Animais , Venenos de Abelha/metabolismo , Histamina/farmacologia , Heterópteros/metabolismo , Hormônios de Inseto/farmacologia , Ácido Pirrolidonocarboxílico/metabolismo
3.
J Insect Physiol ; 146: 104504, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36935036

RESUMO

The anatomical, physiological, and behavioral characteristics of honey bees are affected by the season as well as division of labor. In this study, we examined the structure, ultrastructure, and gene expression of fat body cells in both long-lived winter and short-lived summer worker bees (the youngest stage of hive bees and forager bees). In contrast to hive bees, foragers and winter bees have a higher metabolism due to intensive muscle activity during their flight (foragers) or endothermic heat production (winter bees). These workers differ from hive bees in the biology of their mitochondria, peroxisomes, and lysosomes as well as in the expression of the genes involved in lipid, carbohydrate, amino acid metabolism, insulin, and TGF- ß signaling. Additionally, the expression of genes related to phospholipid metabolism was higher in the hive bees. However, we found no differences between workers in the expression of genes controlling cell organelles, such as the Golgi apparatus, endoplasmic reticulum, ribosomes, nucleus, and vacuoles, as well as genes for DNA replication, cell cycle control, and autophagy. Furthermore, lysosomes, autophagic processes and lipofuscin particles were more frequently observed in winter bees using electron microscopy.


Assuntos
Abelhas , Expressão Gênica , Animais , Abelhas/genética , Abelhas/ultraestrutura , Corpo Adiposo/metabolismo , Corpo Adiposo/ultraestrutura , Estações do Ano
4.
Artigo em Inglês | MEDLINE | ID: mdl-36108997

RESUMO

The effects of the entomopathogenic nematode Steinernema carpocapsae on the Colorado potato beetle (CPB) Leptinotarsa decemlineata and the involvement of adipokinetic hormone (AKH) in the responsive reactions were examined in this study. It was observed that nematode application doubled the amount of AKH (Peram-CAH-I and Peram-CAH-II) in the central nervous system of L. decemlineata, indicating mobilization of anti-stress reactions in the body. Furthermore, the external co-application of Peram-CAH-II with the nematode significantly increased beetle mortality (5.6 and 1.8 times, 1 and 2 days after application, respectively). The mechanism underlying this phenomenon was investigated. As the effect on gut characteristics was equivocal, it was assumed that the nematodes profited from the observed mobilization of metabolites from the fat body into the Peram-CAH-II-induced hemolymph. This phenomenon supplied nematodes with a more nutrient-dense substrate on which they propagated. Furthermore, Peram-CAH-II lowered vitellogenin expression in the fat body, particularly in males, thus limiting the anti-pathogen defense capacity of the protein. However, there could be other possible mechanisms underpinning this chain of events. The findings could be theoretically intriguing but could also aid in developing real insect pest control methods in the future.


Assuntos
Besouros , Rabditídios , Solanum tuberosum , Animais , Hormônios de Inseto , Masculino , Oligopeptídeos , Ácido Pirrolidonocarboxílico/análogos & derivados , Rabditídios/fisiologia , Vitelogeninas
5.
Neurosci Biobehav Rev ; 140: 104816, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35940307

RESUMO

Animals and humans share similar reactions to the effects of addictive substances, including those of their brain networks to drugs. Our review focuses on simple invertebrate models, particularly the honeybee (Apis mellifera), and on the effects of drugs on bee behaviour and brain functions. The drug effects in bees are very similar to those described in humans. Furthermore, the honeybee community is a superorganism in which many collective functions outperform the simple sum of individual functions. The distribution of reward functions in this superorganism is unique - although sublimated at the individual level, community reward functions are of higher quality. This phenomenon of collective reward may be extrapolated to other animal species living in close and strictly organised societies, i.e. humans. The relationship between sociality and reward, based on use of similar parts of the neural network (social decision-making network in mammals, mushroom body in bees), suggests a functional continuum of reward and sociality in animals.


Assuntos
Drosophila , Recompensa , Animais , Abelhas , Encéfalo , Humanos , Insetos , Mamíferos , Comportamento Social
6.
Microsc Microanal ; : 1-11, 2022 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-35616227

RESUMO

In this study, we tested the hypothesis that a micro-serrated edge on the honey bee Apis mellifera stinger tip serves as a tool for more intensive crushing of cell membranes in the victim's tissues. This could have mechanical consequences as well as initiate metabolic pathways linked to cell membrane breakdown (e.g., production of biogenic amines). Accordingly, we found that hymenopteran species that use their stingers as an offensive or defensive weapon to do as much damage to the victim's body as possible had this cuticular microstructure. In parasitic hymenopterans, on the other hand, this structure was missing, as stingers are solely used to delicately transport venom to the victim's body in order to do little mechanical harm. We also demonstrated that the stinger lancets of the honey bee A. mellifera are living organs with sensilla innervated by sensory neurons and containing other essential tissues, rather than mere cuticular structures.

7.
Plants (Basel) ; 11(10)2022 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-35631737

RESUMO

The toxicity of the Bacillus thuringiensis (Bt) toxin Cry3Aa-originally used against the main potato pest, the Colorado potato beetle, Leptinotarsa decemlineata-was verified on this species and then evaluated against the Egyptian armyworm, Spodoptera littoralis, which is a pest of several economically important plants. Larvae of S. littoralis were fed a semi-artificial diet supplemented either with a recombinant or with a natural Bt toxin Cry3Aa and with the genetically engineered (GE) potato of variety Superior NewLeaf (SNL) expressing Cry3Aa. Cry3Aa concentration in the diet and the content in the leaves were verified via ELISA (enzyme-linked immunosorbent assay) and HPLC (high-performance liquid chromatography) during and at the end of the experiments. The biological effectiveness of the coleopteran-specific Cry3Aa with previous reports of activity against S. littoralis was tested on five different populations of S. littoralis larvae by monitoring 13 parameters involving development from penultimate instar, weight, the efficiency of food conversion to biomass, ability to reproduce, and mortality. Although some occasional differences occurred between the Cry3Aa treatments and control, any key deleterious effects on S. littoralis in this study were not confirmed. We concluded that the Cry3Aa toxin appears to be non-toxic to S. littoralis, and its practical application against this pest is unsuitable.

8.
Neurosci Biobehav Rev ; 135: 104570, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35131397

RESUMO

In classical neuroscience, Dale´s principle postulates that neuronal identity is conferred by the specific neurotransmitter that it releases. However, the brain might be more tractable to specific situations regardless of specific specialisation which may contradict this principle. Hence, this constrained approach of how we perceive and study the nervous system must be revisited and revised, specifically by studying the dopaminergic system. We presume a relatively flexible change in the dopaminergic system due to neuronal activity or environmental changes. While the parallel between the reward system of mammals and insects is generally well accepted, herein, we extend the idea that the insect nervous system might also possess incredible plasticity, similar to the mammalian system. In this review, we critically evaluate the available information about the reward system in vertebrates and invertebrates, emphasising the dopaminergic neuronal plasticity, a challenge to the classical Dale's principle. Thus, neurotransmitter switching significantly disrupts the static idea of neural network organisation and suggests greater possibilities for a dynamic response to the current life context of organisms.


Assuntos
Drosophila , Corpos Pedunculados , Animais , Dopamina , Neurônios Dopaminérgicos/fisiologia , Drosophila/fisiologia , Drosophila melanogaster/fisiologia , Humanos , Mamíferos , Corpos Pedunculados/fisiologia , Neurotransmissores/fisiologia
9.
Artigo em Inglês | MEDLINE | ID: mdl-34775045

RESUMO

Worker honey bees are subject to biochemical and physiological changes throughout the year. This study aimed to provide the reasons behind these fluctuations. The markers analysed included lipid, carbohydrate, and protein levels in the haemolymph; the activity of digestive enzymes in the midgut; the levels of adipokinetic hormone (AKH) in the bee central nervous system; the levels of vitellogenins in the bee venom and haemolymph; and the levels of melittin in the venom. The levels of all the main nutrients in the haemolymph peaked mostly within the period of maximal bee activity, whereas the activity of digestive enzymes mostly showed a two-peak course. Furthermore, the levels of AKHs fluctuated throughout the year, with modest but significant variations. These data suggest that the role of AKHs in bee energy metabolism is somewhat limited, and that bees rely more on available food and less on body deposits. Interestingly, the non-metabolic characteristics also fluctuated over the year. The vitellogenin peak reached its maximum in the haemolymph in winter, which is probably associated with the immunoprotection of long-lived winter bees. The analysis of bee venom showed the maximal levels of vitellogenin in autumn; however, it is not entirely clear why this is the case. Finally, melittin levels showed strong fluctuations, suggesting that seasonal control was unlikely.


Assuntos
Abelhas/fisiologia , Estações do Ano , Animais , Venenos de Abelha/metabolismo , Biomarcadores/metabolismo , Sistema Nervoso Central/metabolismo , Sistema Digestório/enzimologia , Hemolinfa/metabolismo , Hormônios de Inseto/metabolismo , Meliteno/metabolismo , Oligopeptídeos/metabolismo , Ácido Pirrolidonocarboxílico/análogos & derivados , Ácido Pirrolidonocarboxílico/metabolismo , Vitelogeninas/metabolismo
10.
Neurosci Biobehav Rev ; 123: 301-319, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33421541

RESUMO

The fruit fly Drosophila melanogaster brain is the most extensively investigated model of a reward system in insects. Drosophila can discriminate between rewarding and punishing environmental stimuli and consequently undergo associative learning. Functional models, especially those modelling mushroom bodies, are constantly being developed using newly discovered information, adding to the complexity of creating a simple model of the reward system. This review aims to clarify whether its reward system also includes a hedonic component. Neurochemical systems that mediate the 'wanting' component of reward in the Drosophila brain are well documented, however, the systems that mediate the pleasure component of reward in mammals, including those involving the endogenous opioid and endocannabinoid systems, are unlikely to be present in insects. The mushroom body components exhibit differential developmental age and different functional processes. We propose a hypothetical hierarchy of the levels of reinforcement processing in response to particular stimuli, and the parallel processes that take place concurrently. The possible presence of activity-silencing and meta-satiety inducing levels in Drosophila should be further investigated.


Assuntos
Drosophila melanogaster , Drosophila , Animais , Corpos Pedunculados , Reforço Psicológico , Recompensa
11.
Sci Rep ; 11(1): 592, 2021 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-33436732

RESUMO

In honeybees (Apis mellifera), the rate of aging is modulated through social interactions and according to caste differentiation and the seasonal (winter/summer) generation of workers. Winter generation workers, which hatch at the end of summer, have remarkably extended lifespans as an adaptation to the cold season when the resources required for the growth and reproduction of colonies are limited and the bees need to maintain the colony until the next spring. In contrast, the summer bees only live for several weeks. To better understand the lifespan differences between summer and winter bees, we studied the fat bodies of honeybee workers and identified several parameters that fluctuate in a season-dependent manner. In agreement with the assumption that winter workers possess greater fat body mass, our data showed gradual increases in fat body mass, the size of the fat body cells, and Vg production as the winter season proceeded, as well as contrasting gradual decreases in these parameters in the summer season. The differences in the fat bodies between winter and summer bees are accompanied by respective increases and decreases in telomerase activity and DNA replication in the fat bodies. These data show that although the fat bodies of winter bees differ significantly from those of summer bees, these differences are not a priori set when bees hatch at the end of summer or in early autumn but instead gradually evolve over the course of the season, depending on environmental factors.


Assuntos
Abelhas/genética , Abelhas/metabolismo , Tamanho Celular , Replicação do DNA/fisiologia , Corpo Adiposo/metabolismo , Telomerase/metabolismo , Adaptação Fisiológica , Envelhecimento/fisiologia , Fenômenos Fisiológicos da Nutrição Animal/fisiologia , Animais , Abelhas/citologia , Abelhas/fisiologia , Comportamento Animal/fisiologia , Longevidade , Estações do Ano , Interação Social
12.
Toxins (Basel) ; 14(1)2021 12 23.
Artigo em Inglês | MEDLINE | ID: mdl-35050987

RESUMO

Bees originally developed their stinging apparatus and venom against members of their own species from other hives or against predatory insects. Nevertheless, the biological and biochemical response of arthropods to bee venom is not well studied. Thus, in this study, the physiological responses of a model insect species (American cockroach, Periplaneta americana) to honeybee venom were investigated. Bee venom toxins elicited severe stress (LD50 = 1.063 uL venom) resulting in a significant increase in adipokinetic hormones (AKHs) in the cockroach central nervous system and haemolymph. Venom treatment induced a large destruction of muscle cell ultrastructure, especially myofibrils and sarcomeres. Interestingly, co-application of venom with cockroach Peram-CAH-II AKH eliminated this effect. Envenomation modulated the levels of carbohydrates, lipids, and proteins in the haemolymph and the activity of digestive amylases, lipases, and proteases in the midgut. Bee venom significantly reduced vitellogenin levels in females. Dopamine and glutathione (GSH and GSSG) insignificantly increased after venom treatment. However, dopamine levels significantly increased after Peram-CAH-II application and after co-application with bee venom, while GSH and GSSG levels immediately increased after co-application. The results suggest a general reaction of the cockroach body to bee venom and at least a partial involvement of AKHs.


Assuntos
Venenos de Abelha/efeitos adversos , Hemolinfa/efeitos dos fármacos , Imunidade Inata , Hormônios de Inseto/farmacologia , Oligopeptídeos/farmacologia , Periplaneta/imunologia , Ácido Pirrolidonocarboxílico/análogos & derivados , Animais , Sistema Nervoso Central/química , Sistema Nervoso Central/efeitos dos fármacos , Hemolinfa/química , Periplaneta/química , Periplaneta/efeitos dos fármacos , Ácido Pirrolidonocarboxílico/farmacologia
13.
Cells ; 9(12)2020 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-33322530

RESUMO

Insect adipokinetic hormones (AKHs) are short peptides produced in the corpora cardiaca and are responsible for mobilizing energy stores from the fat body to the hemolymph. Three related peptides, AKH1, AKH2, and AKH/corazonin-related peptide (ACP) as well as three AKH receptors have been reported in Bombyx mori. AKH1 and AKH2 are specific for the AKHR1 receptor, whereas ACP interacts with the other two AKHRs. To assess the effect of the two silkworm AKHs and ACP in the regulation of energy homeostasis we examined the expression pattern of the three peptides and their receptors as well as their effect on the level of carbohydrates and lipids in the hemolymph. Our results support the hypothesis that only AKH1 and AKH2 peptides together with the AKHR1 receptor are involved in the maintenance of energy homeostasis. Because Bombyx AKHR1 (BmAKHR1) seems to be a true AKHR we generated its mutation. The BmAKHR1 mutant larvae display significantly lower carbohydrate and lipid levels in the hemolymph and reduced sensitivity to starvation. Our study clarifies the role of BmAKHR1 in energy homeostasis.


Assuntos
Bombyx/metabolismo , Hormônios de Inseto/metabolismo , Oligopeptídeos/metabolismo , Ácido Pirrolidonocarboxílico/análogos & derivados , Transdução de Sinais , Animais , Bombyx/crescimento & desenvolvimento , Carboidratos/análise , Metabolismo Energético , Regulação da Expressão Gênica , Hemolinfa/metabolismo , Hormônios de Inseto/genética , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Larva/metabolismo , Lipídeos/análise , Mutagênese , Neuropeptídeos/genética , Neuropeptídeos/metabolismo , Oligopeptídeos/genética , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Ácido Pirrolidonocarboxílico/metabolismo , Receptores de Glucagon/genética , Receptores de Glucagon/metabolismo
14.
Pathogens ; 9(10)2020 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-32998278

RESUMO

Insect adipokinetic hormones (AKHs) are neuropeptides with a wide range of actions, including the control of insect energy metabolism. These hormones are also known to be involved in the insect defence system against toxins and pathogens. In this study, our aim was to demonstrate whether the application of external AKHs significantly enhances the efficacy of the entomopathogenic fungus Isaria fumosorosea in a model species (firebug Pyrrhocoris apterus) and pest species (Egyptian cotton leafworm Spodoptera littoralis and pea aphid Acyrthosiphon pisum). It was found that the co-application of Isaria with AKHs significantly enhanced insect mortality in comparison to the application of Isaria alone. The mode of action probably involves an increase in metabolism that is caused by AKHs (evidenced by the production of carbon dioxide), which accelerates the turnover of Isaria toxins produced into the infected insects. However, several species-specific differences probably exist. Intoxication by Isaria elicited the stimulation of Akh gene expression and synthesis of AKHs. Therefore, all interactions between Isaria and AKH actions as well as their impact on insect physiology from a theoretical and practical point of view need to be discussed further.

15.
Insects ; 11(2)2020 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-32059419

RESUMO

Titanus giganteus is one of the largest insects in the world, but unfortunately, there is a lack of basic information about its biology. Previous papers have mostly described Titanus morphology or taxonomy, but studies concerning its anatomy and physiology are largely absent. Thus, we employed microscopic, physiological, and analytical methods to partially fill this gap. Our study focused on a detailed analysis of the antennal sensilla, where coeloconic sensilla, grouped into irregularly oval fields, and sensilla trichoidea were found. Further, the inspection of the internal organs showed apparent degeneration of the gut and almost total absence of fat body. The gut was already empty; however, certain activity of digestive enzymes was recorded. The brain was relatively small, and the ventral nerve cord consisted of three ganglia in the thorax and four ganglia in the abdomen. Each testis was composed of approximately 30 testicular follicles filled with a clearly visible sperm. Chromatographic analysis of lipids in the flight muscles showed the prevalence of storage lipids that contained 13 fatty acids, and oleic acid represented 60% of them. Some of our findings indicate that adult Titanus rely on previously accumulated reserves rather than feeding from the time of eclosion.

16.
Artigo em Inglês | MEDLINE | ID: mdl-31783176

RESUMO

The adipokinetic hormones (AKHs) are known to be involved in insect immunity, thus their role in the cockroach Periplaneta americana infected with the entomopathogenic fungus Isaria fumosorosea was examined in this study. The application of I. fumosorosea resulted in a significant increase in both Akh gene expression and AKH peptide levels. Further, co-application of I. fumosorosea with Peram-CAH-II significantly enhanced cockroach mortality compared with the application of I. fumosorosea alone. The mechanism of AKH action could involve metabolic stimulation, which was indicated by a significant increase in carbon dioxide production; this effect can increase the turnover and thus efficacy of toxins produced by I. fumosorosea in the cockroach's body. I. fumosorosea treatment resulted in a significant decrease in haemolymph nutrients (carbohydrates and lipids), but co-application with Peram-CAH-II restored control level of lipids or even further increased the level of carbohydrates. Such nutritional abundance could enhance the growth and development of I. fumosorosea. Further, both I. fumosorosea and Peram-CAH-II probably affected oxidative stress: I. fumosorosea alone curbed the activity of catalase in the cockroach's gut, but co-application with Peram-CAH-II stimulated it. Interestingly, the hormone alone had no effect on catalase activity. Taken together, the results of the present study demonstrate the interactions between the fungus and AKH activity; understanding this relationship could provide insight into AKH action and may have practical implications for insect pest control in the future.


Assuntos
Controle de Insetos/métodos , Hormônios de Inseto/farmacologia , Oligopeptídeos/farmacologia , Periplaneta/efeitos dos fármacos , Ácido Pirrolidonocarboxílico/análogos & derivados , Animais , Dióxido de Carbono/metabolismo , Catalase/metabolismo , Estresse Oxidativo , Ácido Pirrolidonocarboxílico/farmacologia
17.
Artigo em Inglês | MEDLINE | ID: mdl-31644954

RESUMO

This study describes defense functions of the insect neuropeptide sericotropin, which is recognized as an agent that stimulates silk production in some lepidopteran larvae. Sericotropin, expressed in brain tissue of the wax moth Galleria mellonella in all developmental stages, is not expressed in silk glands, indicating its tissue specificity. Fluorescence microscopy confirmed the presence of sericotropin in the brain-subesophageal complex being predominantly and densely distributed under the plasmatic membrane and in axonal parts of neurons. Injection of venom from Habrobracon hebetor and topical application of the entomopathogenic nematode (EPN) Steinernema carpocapsae with symbiotic bacteria Xenorhabdus spp. into or onto G. mellonella larvae resulted in upregulation of the sericotropin gene and peptide, suggesting a role for sericotropin in defense and immunity. Accordingly, two synthetic fragments of sericotropin killed entomotoxic Xenorhabdus spp. bacteria in a disc diffusion antimicrobial test. Further, total metabolism, monitored by carbon dioxide production, significantly decreased after application of either venom or EPN, probably because of muscle impairment by the venom and serious cell damage caused by EPN, especially in the midgut. Both venom and EPN upregulated expression of genes encoding antimicrobial peptides gallerimycin and galiomicin in Galleria brain; however, they downregulated prophenoloxidase and phenoloxidase activity in hemolymph. These results suggest that sericotropin is a multifunctional peptide that plays an important role in G. mellonella defense and immunity.


Assuntos
Larva/parasitologia , Mariposas/parasitologia , Nematoides/fisiologia , Neuropeptídeos/metabolismo , Venenos de Vespas/toxicidade , Animais , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Interações Hospedeiro-Parasita/imunologia , Larva/efeitos dos fármacos , Larva/metabolismo , Masculino , Mariposas/efeitos dos fármacos , Mariposas/metabolismo , Neuropeptídeos/genética
18.
Insect Biochem Mol Biol ; 115: 103241, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31536769

RESUMO

The attrition of telomeres, the ends of eukaryote chromosomes, and activity of telomerase, the enzyme that restores telomere length, play a role in the ageing process and act as indicators of biological age. A notable feature of advanced eusocial insects is the longevity of reproductive individuals (queens and kings) compared to those from non-reproductive castes (workers and soldiers) within a given species, with a proposed link towards upregulation of telomerase activity in the somatic tissues of reproductive individuals. Given this, eusocial insects provide excellent model systems for research into ageing. We tested telomerase activity and measured telomere length in Bombus terrestris, which is a primitively eusocial insect species with several distinct features compared to advanced social insects. In somatic tissues, telomerase activity was upregulated only in the fat bodies of pre-diapause queens, and this upregulation was linked to heightened DNA synthesis. Telomere length was shorter in old queens compared to that in younger queens or workers. We speculate that (1) the upregulation of telomerase activity, together with DNA synthesis, is the essential step for intensifying metabolic activity in the fat body to build up a sufficient energy reserve prior to diapause, and that (2) the lifespan differences between B. terrestris workers and queens are related to the long diapause period of the queen. A possible relationship between telomere length regulation and TOR, FOXO, and InR as cell signaling components, was tested.


Assuntos
Abelhas/enzimologia , Corpo Adiposo/enzimologia , Telomerase/metabolismo , Animais , DNA/biossíntese , Feminino , Encurtamento do Telômero
19.
Arch Insect Biochem Physiol ; 101(4): e21586, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31180597

RESUMO

This study examined the effect of two natural toxins (a venom from the parasitic wasp Habrobracon hebetor and destruxin A from the entomopathogenic fungus Metarhizium anisopliae), and one pathogen (the entomopathogenic fungus Isaria fumosorosea) on the activity of basic digestive enzymes in the midgut of the cockroach Periplaneta americana. Simultaneously, the role of adipokinetic hormones (AKH) in the digestive processes was evaluated. The results showed that all tested toxins/pathogens elicited stress responses when applied into the cockroach body, as documented by an increase of AKH level in the central nervous system. The venom from H. hebetor showed no effect on digestive enzyme activities in the ceca and midgut in vitro. In addition, infection by I. fumosorosea caused a decrease in activity of all enzymes in the midgut and a variable decrease in activity in the ceca; application of AKHs did not reverse the inhibition. Destruxin A inhibited the activity of all enzymes in the midgut but none in the ceca in vitro; application of AKHs did reverse this inhibition, and no differences between both cockroach AKHs were found. Overall, the results demonstrated the variable effect of the tested toxins/pathogens on the digestive processes of cockroaches as well as the variable ability of AKH to counteract these effects.


Assuntos
Depsipeptídeos/toxicidade , Hormônios de Inseto/farmacologia , Oligopeptídeos/farmacologia , Periplaneta/efeitos dos fármacos , Ácido Pirrolidonocarboxílico/análogos & derivados , Venenos de Vespas/toxicidade , Animais , Ativação Enzimática , Trato Gastrointestinal/enzimologia , Periplaneta/enzimologia , Ácido Pirrolidonocarboxílico/farmacologia
20.
J Exp Biol ; 222(Pt 10)2019 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-31043458

RESUMO

This study examined the expression and role of vitellogenin (Vg) in the body of the firebug Pyrrhocoris apterus (Heteroptera, Insecta) during infection elicited by two entomopathogenic organisms, the nematode Steinernema carpocapsae and the fungus Isaria fumosorosea Infection by S. carpocapsae significantly upregulated Vg mRNA expression in the male body. The corresponding increase in Vg protein expression was also confirmed by electrophoretic and immunoblotting analyses. Remarkably, in females, the opposite tendency was noted. Nematodal infection significantly reduced both Vg mRNA and Vg protein expression levels in fat body and hemolymph, respectively. We speculate that infection of reproductive females reduces Vg expression to a level that is still sufficient for defense, but is insufficient for reproduction. This circumstance reduces energy expenditure and helps the individual to cope with the infection. Importantly, purified Vg significantly inhibited growth of Xenorhabdus spp., an entomotoxic bacteria isolated from S. carpocapsae. However, the effect of Vg against I. fumosorosea was not so obvious. The fungus significantly stimulated Vg gene expression in males; however, a similar increase was not recapitulated at the protein level. Nevertheless, in females, both mRNA and protein Vg levels were significantly reduced after the fungal infection. The obtained data demonstrate that Vg is probably an important defense protein, possibly with a specific activity. This considerably expands the known spectrum of Vg functions, as its primary role was thought to be limited to regulating egg development in the female body.


Assuntos
Heterópteros/genética , Interações Hospedeiro-Patógeno/fisiologia , Hypocreales/fisiologia , Proteínas de Insetos/genética , Rabditídios/fisiologia , Vitelogeninas/genética , Animais , Feminino , Expressão Gênica , Heterópteros/metabolismo , Heterópteros/microbiologia , Heterópteros/parasitologia , Interações Hospedeiro-Parasita , Interações Hospedeiro-Patógeno/genética , Proteínas de Insetos/metabolismo , Masculino , Vitelogeninas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA