Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Geohealth ; 8(5): e2023GH000927, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38711844

RESUMO

The environmental justice literature demonstrates consistently that low-income and minority communities are disproportionately exposed to environmental hazards. In this case study, we examined cumulative multipollutant, multidomain, and multimatrix environmental exposures in Milwaukee County, Wisconsin for the year 2015. We identified spatial hot spots in Milwaukee County both individually (using local Moran's I) and through clusters (using K-means clustering) across a profile of environmental pollutants that span regulatory domains and matrices of exposure, as well as socioeconomic indicators. The cluster with the highest exposures within the urban area was largely characterized by low socioeconomic status and an overrepresentation of the Non-Hispanic Black population relative to the county as a whole. In this cluster, average pollutant concentrations were equivalent to the 78th percentile in county-level blood lead levels, 67th percentile in county-level NO2, 79th percentile in county-level CO, and 78th percentile in county-level air toxics. Simultaneously, this cluster had an average equivalent to the 62nd percentile in county-level unemployment, 70th percentile in county-level population rate lacking a high school diploma, 73rd percentile in county-level poverty rate, and 28th percentile in county-level median household income. The spatial patterns of pollutant exposure and SES indicators suggested that these disparities were not random but were instead structured by socioeconomic and racial factors. Our case study, which combines environmental pollutant exposures, sociodemographic data, and clustering analysis, provides a roadmap to identify and target overburdened communities for interventions that reduce environmental exposures and consequently improve public health.

2.
Environ Sci Atmos ; 3(9): 1319-1334, 2023 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-38013728

RESUMO

Pellet combustion in residential heating stoves has increased globally during the last decade. Despite their high combustion efficiency, the widespread use of pellet stoves is expected to adversely impact air quality. The atmospheric aging of pellet emissions has received even less attention, focusing mainly on daytime conditions, while the degree to which pellet emissions undergo night-time aging as well as the role of relative humidity remain poorly understood. In this study, environmental simulation chamber experiments were performed to characterize the fresh and aged organic aerosol (OA) emitted by a pellet stove. The fresh pellet stove PM1 (particulate matter with an aerodynamic diameter less than 1 µm) emissions consisted mainly of OA (93 ± 4%, mean ± standard deviation) and black carbon (5 ± 3%). The primary OA (POA) oxygen-to-carbon ratio (O : C) was 0.58 ± 0.04, higher than that of fresh logwood emissions. The fresh OA at a concentration of 70 µg m-3 (after dilution and equilibration in the chamber) consisted of semi-volatile (68%), low and extremely low volatility (16%) and intermediate-volatility (16%) compounds. The oxidation of pellet emissions under dark conditions was investigated by injecting nitrogen dioxide (NO2) and ozone (O3) into the chamber, at different (10-80%) relative humidity (RH) levels. In all dark aging experiments secondary organic aerosol (SOA) formation was observed, increasing the OA levels after a few hours of exposure to NO3 radicals. The change in the aerosol composition and the extent of oxidation depended on RH. For low RH, the SOA mass formed was up to 30% of the initial OA, accompanied by a moderate change in both O : C levels (7-8% increase) and the OA spectrum. Aging under higher RH conditions (60-80%) led to a more oxygenated aerosol (increase in O : C of 11-18%), but only a minor (1-10%) increase in OA mass. The increase in O : C at high RH indicates the importance of heterogeneous aqueous reactions in this system, that oxidize the original OA with a relatively small net change in the OA mass. These results show that the OA in pellet emissions can chemically evolve under low photochemical activity (e.g. the wintertime period) with important enhancement in SOA mass under certain conditions.

3.
Nat Commun ; 13(1): 6329, 2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-36319637

RESUMO

Persons of color have been exposed to a disproportionate burden of air pollution across the United States for decades. Yet, the inequality in exposure to known toxic elements of air pollution is unclear. Here, we find that populations living in racially segregated communities are exposed to a form of fine particulate matter with over three times higher mass proportions of known toxic and carcinogenic metals. While concentrations of total fine particulate matter are two times higher in racially segregated communities, concentrations of metals from anthropogenic sources are nearly ten times higher. Populations living in racially segregated communities have been disproportionately exposed to these environmental stressors throughout the past decade. We find evidence, however, that these disproportionate exposures may be abated though targeted regulatory action. For example, recent regulations on marine fuel oil not only reduced vanadium concentrations in coastal cities, but also sharply lessened differences in vanadium exposure by segregation.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Estados Unidos , Humanos , Poluentes Atmosféricos/análise , Etnicidade , Vanádio , Poluição do Ar/análise , Material Particulado/análise , Monitoramento Ambiental , Exposição Ambiental/análise
4.
Environ Sci Atmos ; 2(5): 1221-1236, 2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-36277744

RESUMO

Particulate matter from biomass burning emissions affects air quality, ecosystems and climate; however, quantifying these effects requires that the connection between primary emissions and secondary aerosol production is firmly established. We performed atmospheric simulation chamber experiments on the chemical oxidation of residential biomass burning emissions under dark conditions. Biomass burning organic aerosol was found to age under dark conditions, with its oxygen-to-carbon ratio increasing by 7-34% and producing 1-38 µg m-3 of secondary organic aerosol (5-80% increase over the fresh organic aerosol) after 30 min of exposure to NO3 radicals in the chamber (corresponding to 1-3 h of exposure to typical nighttime NO3 radical concentrations in an urban environment). The average mass concentration of SOA formed under dark-oxidation conditions was comparable to the mass concentration formed after 3 h (equivalent to 7-10 h of ambient exposure) under ultraviolet lights (6 µg m-3 or a 47% increase over the emitted organic aerosol concentration). The dark-aging experiments showed a substantial increase in secondary nitrate aerosol (0.12-3.8 µg m-3), 46-100% of which is in the form of organic nitrates. The biomass burning aerosol pH remained practically constant at 2.8 throughout the experiment. This value promotes inorganic nitrate partitioning to the particulate phase, potentially contributing to the buildup of nitrate aerosol in the boundary layer and enhancing long-range transport. These results suggest that oxidation through reactions with the NO3 radical is an additional secondary aerosol formation pathway in biomass burning emission plumes that should be accounted for in atmospheric chemical-transport models.

5.
Geohealth ; 5(9): e2021GH000482, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34541439

RESUMO

Familiarity with the use of face coverings to reduce the risk of respiratory disease has increased during the coronavirus pandemic; however, recommendations for their use outside of the pandemic remains limited. Here, we develop a modeling framework to quantify the potential health benefits of wearing a face covering or respirator to mitigate exposure to particulate air pollution. This framework accounts for the wide range of available face coverings and respirators, fit factors and efficacy, air pollution characteristics, and exposure-response data. Our modeling shows that N95 respirators offer robust protection against different sources of particulate matter, reducing exposure by more than a factor of 14 when worn with a leak rate of 5%. Synthetic-fiber masks offer less protection with a strong dependence on aerosol size distribution (protection factors ranging from 4.4 to 2.2), while natural-fiber and surgical masks offer reductions in the exposure of 1.9 and 1.7, respectively. To assess the ability of face coverings to provide population-level health benefits to wildfire smoke, we perform a case study for the 2012 Washington state fire season. Our models suggest that although natural-fiber masks offer minor reductions in respiratory hospitalizations attributable to smoke (2%-11%) due to limited filtration efficiency, N95 respirators and to a lesser extent surgical and synthetic-fiber masks may lead to notable reductions in smoke-attributable hospitalizations (22%-39%, 9%-24%, and 7%-18%, respectively). The filtration efficiency, bypass rate, and compliance rate (fraction of time and population wearing the device) are the key factors governing exposure reduction potential and health benefits during severe wildfire smoke events.

6.
Sci Adv ; 7(22)2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-34049885

RESUMO

Fire plays a pivotal role in shaping terrestrial ecosystems and the chemical composition of the atmosphere and thus influences Earth's climate. The trend and magnitude of fire activity over the past few centuries are controversial, which hinders understanding of preindustrial to present-day aerosol radiative forcing. Here, we present evidence from records of 14 Antarctic ice cores and 1 central Andean ice core, suggesting that historical fire activity in the Southern Hemisphere (SH) exceeded present-day levels. To understand this observation, we use a global fire model to show that overall SH fire emissions could have declined by 30% over the 20th century, possibly because of the rapid expansion of land use for agriculture and animal production in middle to high latitudes. Radiative forcing calculations suggest that the decreasing trend in SH fire emissions over the past century largely compensates for the cooling effect of increasing aerosols from fossil fuel and biofuel sources.

7.
Proc Natl Acad Sci U S A ; 117(52): 33028-33033, 2020 12 29.
Artigo em Inglês | MEDLINE | ID: mdl-33318218

RESUMO

Oxidized organic aerosol (OOA) is a major component of ambient particulate matter, substantially impacting climate, human health, and ecosystems. OOA is readily produced in the presence of sunlight, and requires days of photooxidation to reach the levels observed in the atmosphere. High concentrations of OOA are thus expected in the summer; however, our current mechanistic understanding fails to explain elevated OOA during wintertime periods of low photochemical activity that coincide with periods of intense biomass burning. As a result, atmospheric models underpredict OOA concentrations by a factor of 3 to 5. Here we show that fresh emissions from biomass burning exposed to NO2 and O3 (precursors to the NO3 radical) rapidly form OOA in the laboratory over a few hours and without any sunlight. The extent of oxidation is sensitive to relative humidity. The resulting OOA chemical composition is consistent with the observed OOA in field studies in major urban areas. Additionally, this dark chemical processing leads to significant enhancements in secondary nitrate aerosol, of which 50 to 60% is estimated to be organic. Simulations that include this understanding of dark chemical processing show that over 70% of organic aerosol from biomass burning is substantially influenced by dark oxidation. This rapid and extensive dark oxidation elevates the importance of nocturnal chemistry and biomass burning as a global source of OOA.


Assuntos
Poluentes Atmosféricos/química , Poluição do Ar/estatística & dados numéricos , Biomassa , Material Particulado/química , Aerossóis/química , Cidades , Modelos Teóricos , Dióxido de Nitrogênio/análise , Dióxido de Nitrogênio/química , Oxirredução , Oxigênio/química
8.
Proc Natl Acad Sci U S A ; 117(37): 22705-22711, 2020 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-32839319

RESUMO

Black carbon (BC) aerosol plays an important role in the Earth's climate system because it absorbs solar radiation and therefore potentially warms the climate; however, BC can also act as a seed for cloud particles, which may offset much of its warming potential. If BC acts as an ice nucleating particle (INP), BC could affect the lifetime, albedo, and radiative properties of clouds containing both supercooled liquid water droplets and ice particles (mixed-phase clouds). Over 40% of global BC emissions are from biomass burning; however, the ability of biomass burning BC to act as an INP in mixed-phase cloud conditions is almost entirely unconstrained. To provide these observational constraints, we measured the contribution of BC to INP concentrations ([INP]) in real-world prescribed burns and wildfires. We found that BC contributes, at most, 10% to [INP] during these burns. From this, we developed a parameterization for biomass burning BC and combined it with a BC parameterization previously used for fossil fuel emissions. Applying these parameterizations to global model output, we find that the contribution of BC to potential [INP] relevant to mixed-phase clouds is ∼5% on a global average.


Assuntos
Carbono/química , Mudança Climática , Água/química , Incêndios Florestais , Aerossóis , Poluentes Atmosféricos/efeitos adversos , Poluentes Atmosféricos/química , Carbono/efeitos adversos , Gelo/análise , Estações do Ano
9.
Indoor Air ; 30(3): 521-533, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31943353

RESUMO

Monitoring improved cookstove adoption and usage in developing countries can help anticipate potential health and environmental benefits that may result from household energy interventions. This study explores stove-usage monitor (SUM)-derived usage data from field studies in China (52 stoves, 1422 monitoring days), Honduras (270 stoves, 630 monitoring days), India (19 stoves, 565 monitoring days), and Uganda (38 stoves, 1007 monitoring days). Traditional stove usage was found to be generally similar among four seemingly disparate countries in terms of cooking habits, with average usage of between 171 and 257 minutes per day for the most-used stoves. In Honduras, where survey-based usage data were also collected, there was only modest agreement between sensor data and self-reported user data. For Indian homes, we combined stove-usage data with a single-zone Monte Carlo box model to estimate kitchen-level PM2.5 and CO concentrations under various scenarios of cleaner cookstove adoption. We defined clean cookstove performance based on the International Standards Organization (ISO) voluntary guidelines. Model results showed that even with 75% displacement of traditional stoves with the cleanest available stove (ISO tier-5), World Health Organization 24 hours PM2.5 standards were exceeded in 96.4% of model runs, underscoring the importance of full displacement.


Assuntos
Poluição do Ar em Ambientes Fechados , Culinária , China , Características da Família , Honduras , Utensílios Domésticos , Produtos Domésticos , Humanos , Índia , Material Particulado , População Rural , Uganda
10.
Nature ; 574(7778): 399-403, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31619794

RESUMO

Cloud condensation nuclei (CCN) can affect cloud properties and therefore Earth's radiative balance1-3. New particle formation (NPF) from condensable vapours in the free troposphere has been suggested to contribute to CCN, especially in remote, pristine atmospheric regions4, but direct evidence is sparse, and the magnitude of this contribution is uncertain5-7. Here we use in situ aircraft measurements of vertical profiles of aerosol size distributions to present a global-scale survey of NPF occurrence. We observe intense NPF at high altitudes in tropical convective regions over both Pacific and Atlantic oceans. Together with the results of chemical-transport models, our findings indicate that NPF persists at all longitudes as a global-scale band in the tropical upper troposphere, covering about 40 per cent of Earth's surface. Furthermore, we find that this NPF in the tropical upper troposphere is a globally important source of CCN in the lower troposphere, where CCN can affect cloud properties. Our findings suggest that the production of CCN as new particles descend towards the surface is not adequately captured in global models, which tend to underestimate both the magnitude of tropical upper tropospheric NPF and the subsequent growth of new particles to CCN sizes.


Assuntos
Atmosfera , Material Particulado , Aerossóis , Oceano Atlântico , Modelos Químicos , Oceano Pacífico , Clima Tropical
11.
Atmos Chem Phys ; 19(13): 8591-8617, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33273898

RESUMO

A total of 16 global chemistry transport models and general circulation models have participated in this study; 14 models have been evaluated with regard to their ability to reproduce the near-surface observed number concentration of aerosol particles and cloud condensation nuclei (CCN), as well as derived cloud droplet number concentration (CDNC). Model results for the period 2011-2015 are compared with aerosol measurements (aerosol particle number, CCN and aerosol particle composition in the submicron fraction) from nine surface stations located in Europe and Japan. The evaluation focuses on the ability of models to simulate the average across time state in diverse environments and on the seasonal and short-term variability in the aerosol properties. There is no single model that systematically performs best across all environments represented by the observations. Models tend to underestimate the observed aerosol particle and CCN number concentrations, with average normalized mean bias (NMB) of all models and for all stations, where data are available, of -24% and -35% for particles with dry diameters > 50 and > 120nm, as well as -36% and -34% for CCN at supersaturations of 0.2% and 1.0%, respectively. However, they seem to behave differently for particles activating at very low supersaturations (< 0.1 %) than at higher ones. A total of 15 models have been used to produce ensemble annual median distributions of relevant parameters. The model diversity (defined as the ratio of standard deviation to mean) is up to about 3 for simulated N3 (number concentration of particles with dry diameters larger than 3 nm) and up to about 1 for simulated CCN in the extra-polar regions. A global mean reduction of a factor of about 2 is found in the model diversity for CCN at a supersaturation of 0.2% (CCN0.2) compared to that for N3, maximizing over regions where new particle formation is important. An additional model has been used to investigate potential causes of model diversity in CCN and bias compared to the observations by performing a perturbed parameter ensemble (PPE) accounting for uncertainties in 26 aerosol-related model input parameters. This PPE suggests that biogenic secondary organic aerosol formation and the hygroscopic properties of the organic material are likely to be the major sources of CCN uncertainty in summer, with dry deposition and cloud processing being dominant in winter. Models capture the relative amplitude of the seasonal variability of the aerosol particle number concentration for all studied particle sizes with available observations (dry diameters larger than 50, 80 and 120 nm). The short-term persistence time (on the order of a few days) of CCN concentrations, which is a measure of aerosol dynamic behavior in the models, is underestimated on average by the models by 40% during winter and 20% in summer. In contrast to the large spread in simulated aerosol particle and CCN number concentrations, the CDNC derived from simulated CCN spectra is less diverse and in better agreement with CDNC estimates consistently derived from the observations (average NMB -13% and -22% for updraft velocities 0.3 and 0.6 ms-1, respectively). In addition, simulated CDNC is in slightly better agreement with observationally derived values at lower than at higher updraft velocities (index of agreement 0.64 vs. 0.65). The reduced spread of CDNC compared to that of CCN is attributed to the sublinear response of CDNC to aerosol particle number variations and the negative correlation between the sensitivities of CDNC to aerosol particle number concentration (∂N d/∂N a) and to updraft velocity (∂N d/∂w). Overall, we find that while CCN is controlled by both aerosol particle number and composition, CDNC is sensitive to CCN at low and moderate CCN concentrations and to the updraft velocity when CCN levels are high. Discrepancies are found in sensitivities ∂N d/∂N a and ∂N d/∂w; models may be predisposed to be too "aerosol sensitive" or "aerosol insensitive" in aerosol-cloud-climate interaction studies, even if they may capture average droplet numbers well. This is a subtle but profound finding that only the sensitivities can clearly reveal and may explain inter-model biases on the aerosol indirect effect.

12.
Geohealth ; 3(1): 2-10, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32159019

RESUMO

The annual premature mortality in India attributed to exposure to ambient particulate matter (PM2.5) exceeds 1 million (Cohen et al., 2017, https://doi.org/10.1016/S0140-6736(17)30505-6). Studies have estimated sector-specific premature mortality from ambient PM2.5 exposure in India and shown residential energy use is the dominant contributing sector. In this study, we estimate the contribution of PM2.5 and premature mortality from six regions of India in 2012 using the global chemical-transport model. We calculate how premature mortality in India is determined by the transport of pollution from different regions. Of the estimated 1.1 million annual premature deaths from PM2.5 in India, about ~60% was from anthropogenic pollutants emitted from within the region in which premature mortality occurred, ~19% was from transport of anthropogenic pollutants between different regions within India, ~16% was due to anthropogenic pollutants emitted outside of India, and ~4% was associated with natural PM2.5 sources. The emissions from Indo Gangetic Plain contributed to ~46% of total premature mortality over India, followed by Southern India (13%). Indo Gangetic Plain also contributed (~8%) to the most premature mortalities in other regions of India through transport. More than 50% of the premature mortality in Northern, Eastern, Western, and Central India was due to transport of PM2.5 from regions outside of these individual regions. Our results indicate that reduction in anthropogenic emissions over India, as well as its neighboring regions, will be required to reduce the health impact of ambient PM2.5 in India.

13.
Indoor Air ; 28(6): 936-949, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30099773

RESUMO

Emissions from solid-fuel cookstoves have been linked to indoor and outdoor air pollution, climate forcing, and human disease. Although task-based laboratory protocols, such as the Water Boiling Test (WBT), overestimate the ability of improved stoves to lower emissions, WBT emissions data are commonly used to benchmark cookstove performance, estimate indoor and outdoor air pollution concentrations, estimate impacts of stove intervention projects, and select stoves for large-scale control trials. Multiple-firepower testing has been proposed as an alternative to the WBT and is the basis for a new standardized protocol (ISO 19867-1:2018); however, data are needed to assess the value of this approach. In this work, we (a) developed a Firepower Sweep Test [FST], (b) compared emissions from the FST, WBT, and in-home cooking, and (c) quantified the relationship between firepower and emissions using correlation analysis and linear model selection. Twenty-three stove-fuel combinations were evaluated. The FST reproduced the range of PM2.5 and CO emissions observed in the field, including high emissions events not typically observed under the WBT. Firepower was modestly correlated with emissions, although the relationship varied between stove-fuel combinations. Our results justify incorporating multiple-firepower testing into laboratory-based protocols but demonstrate that firepower alone cannot explain the observed variability in cookstove emissions.


Assuntos
Poluição do Ar em Ambientes Fechados/análise , Monóxido de Carbono/análise , Culinária , Monitoramento Ambiental/métodos , Incêndios , Monitoramento Ambiental/normas , Tamanho da Partícula
14.
J Geophys Res Atmos ; 123(7): 3688-3703, 2018 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-33614367

RESUMO

Tropospheric aerosol optical depth (AOD) over India was simulated by Goddard Earth Observing System (GEOS)-Chem, a global 3-D chemical-transport model, using SMOG (Speciated Multi-pOllutant Generator from Indian Institute of Technology Bombay) and GEOS-Chem (GC) (current inventories used in the GEOS-Chem model) inventories for 2012. The simulated AODs were ~80% (SMOG) and 60% (GC) of those measured by the satellites (Moderate Resolution Imaging Spectroradiometer and Multi-angle Imaging SpectroRadiometer). There is no strong seasonal variation in AOD over India. The peak AOD values are observed/simulated during summer. The simulated AOD using SMOG inventory has particulate black and organic carbon AOD higher by a factor ~5 and 3, respectively, compared to GC inventory. The model underpredicted coarse-mode AOD but agreed for fine-mode AOD with Aerosol Robotic Network data. It captured dust only over Western India, which is a desert, and not elsewhere, probably due to inaccurate dust transport and/or noninclusion of other dust sources. The calculated AOD, after dust correction, showed the general features in its observed spatial variation. Highest AOD values were observed over the Indo-Gangetic Plain followed by Central and Southern India with lowest values in Northern India. Transport of aerosols from Indo-Gangetic Plain and Central India into Eastern India, where emissions are low, is significant. The major contributors to total AOD over India are inorganic aerosol (41-64%), organic carbon (14-26%), and dust (7-32%). AOD over most regions of India is a factor of 5 or higher than over the United States.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA