Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Med Image Anal ; 88: 102865, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37331241

RESUMO

Cranial implants are commonly used for surgical repair of craniectomy-induced skull defects. These implants are usually generated offline and may require days to weeks to be available. An automated implant design process combined with onsite manufacturing facilities can guarantee immediate implant availability and avoid secondary intervention. To address this need, the AutoImplant II challenge was organized in conjunction with MICCAI 2021, catering for the unmet clinical and computational requirements of automatic cranial implant design. The first edition of AutoImplant (AutoImplant I, 2020) demonstrated the general capabilities and effectiveness of data-driven approaches, including deep learning, for a skull shape completion task on synthetic defects. The second AutoImplant challenge (i.e., AutoImplant II, 2021) built upon the first by adding real clinical craniectomy cases as well as additional synthetic imaging data. The AutoImplant II challenge consisted of three tracks. Tracks 1 and 3 used skull images with synthetic defects to evaluate the ability of submitted approaches to generate implants that recreate the original skull shape. Track 3 consisted of the data from the first challenge (i.e., 100 cases for training, and 110 for evaluation), and Track 1 provided 570 training and 100 validation cases aimed at evaluating skull shape completion algorithms at diverse defect patterns. Track 2 also made progress over the first challenge by providing 11 clinically defective skulls and evaluating the submitted implant designs on these clinical cases. The submitted designs were evaluated quantitatively against imaging data from post-craniectomy as well as by an experienced neurosurgeon. Submissions to these challenge tasks made substantial progress in addressing issues such as generalizability, computational efficiency, data augmentation, and implant refinement. This paper serves as a comprehensive summary and comparison of the submissions to the AutoImplant II challenge. Codes and models are available at https://github.com/Jianningli/Autoimplant_II.


Assuntos
Próteses e Implantes , Crânio , Humanos , Crânio/diagnóstico por imagem , Crânio/cirurgia , Craniotomia/métodos , Cabeça
2.
Comput Biol Med ; 137: 104766, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34425418

RESUMO

Correct virtual reconstruction of a defective skull is a prerequisite for successful cranioplasty and its automatization has the potential for accelerating and standardizing the clinical workflow. This work provides a deep learning-based method for the reconstruction of a skull shape and cranial implant design on clinical data of patients indicated for cranioplasty. The method is based on a cascade of multi-branch volumetric CNNs that enables simultaneous training on two different types of cranioplasty ground-truth data: the skull patch, which represents the exact shape of the missing part of the original skull, and which can be easily created artificially from healthy skulls, and expert-designed cranial implant shapes that are much harder to acquire. The proposed method reaches an average surface distance of the reconstructed skull patches of 0.67 mm on a clinical test set of 75 defective skulls. It also achieves a 12% reduction of a newly proposed defect border Gaussian curvature error metric, compared to a baseline model trained on synthetic data only. Additionally, it produces directly 3D printable cranial implant shapes with a Dice coefficient 0.88 and a surface error of 0.65 mm. The outputs of the proposed skull reconstruction method reach good quality and can be considered for use in semi- or fully automatic clinical cranial implant design workflows.


Assuntos
Aprendizado Profundo , Procedimentos de Cirurgia Plástica , Humanos , Próteses e Implantes , Crânio/diagnóstico por imagem , Crânio/cirurgia
3.
IEEE Trans Med Imaging ; 40(9): 2329-2342, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33939608

RESUMO

The aim of this paper is to provide a comprehensive overview of the MICCAI 2020 AutoImplant Challenge. The approaches and publications submitted and accepted within the challenge will be summarized and reported, highlighting common algorithmic trends and algorithmic diversity. Furthermore, the evaluation results will be presented, compared and discussed in regard to the challenge aim: seeking for low cost, fast and fully automated solutions for cranial implant design. Based on feedback from collaborating neurosurgeons, this paper concludes by stating open issues and post-challenge requirements for intra-operative use. The codes can be found at https://github.com/Jianningli/tmi.


Assuntos
Próteses e Implantes , Crânio , Crânio/diagnóstico por imagem , Crânio/cirurgia
4.
Data Brief ; 35: 106902, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33997188

RESUMO

The article introduces two complementary datasets intended for the development of data-driven solutions for cranial implant design, which remains to be a time-consuming and laborious task in current clinical routine of cranioplasty. The two datasets, referred to as the SkullBreak and SkullFix in this article, are both adapted from a public head CT collection CQ500 (http://headctstudy.qure.ai/dataset) with CC BY-NC-SA 4.0 license. The SkullBreak contains 114 and 20 complete skulls, each accompanied by five defective skulls and the corresponding cranial implants, for training and evaluation respectively. The SkullFix contains 100 triplets (complete skull, defective skull and the implant) for training and 110 triplets for evaluation. The SkullFix dataset was first used in the MICCAI 2020 AutoImplant Challenge (https://autoimplant.grand-challenge.org/) and the ground truth, i.e., the complete skulls and the implants in the evaluation set are held private by the organizers. The two datasets are not overlapping and differ regarding data selection and synthetic defect creation and each serves as a complement to the other. Besides cranial implant design, the datasets can be used for the evaluation of volumetric shape learning algorithms, such as volumetric shape completion. This article gives a description of the two datasets in detail.

5.
Comput Biol Med ; 123: 103886, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32658793

RESUMO

Designing a cranial implant to restore the protective and aesthetic function of the patient's skull is a challenging process that requires a substantial amount of manual work, even for an experienced clinician. While computer-assisted approaches with various levels of required user interaction exist to aid this process, they are usually only validated on either a single type of simple synthetic defect or a very limited sample of real defects. The work presented in this paper aims to address two challenges: (i) design a fully automatic 3D shape reconstruction method that can address diverse shapes of real skull defects in various stages of healing and (ii) to provide an open dataset for optimization and validation of anatomical reconstruction methods on a set of synthetically broken skull shapes. We propose an application of the multi-scale cascade architecture of convolutional neural networks to the reconstruction task. Such an architecture is able to tackle the issue of trade-off between the output resolution and the receptive field of the model imposed by GPU memory limitations. Furthermore, we experiment with both generative and discriminative models and study their behavior during the task of anatomical reconstruction. The proposed method achieves an average surface error of 0.59mm for our synthetic test dataset with as low as 0.48mm for unilateral defects of parietal and temporal bone, matching state-of-the-art performance while being completely automatic. We also show that the model trained on our synthetic dataset is able to reconstruct real patient defects.


Assuntos
Processamento de Imagem Assistida por Computador , Redes Neurais de Computação , Humanos , Próteses e Implantes , Crânio/diagnóstico por imagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA