Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(15): e2313866121, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38564639

RESUMO

Transposable element invasions have a profound impact on the evolution of genomes and phenotypes. It is thus an important open question how often such TE invasions occur. To address this question, we utilize the genomes of historical specimens, sampled about 200 y ago. We found that the LTR retrotransposons Blood, Opus, and 412 spread in Drosophila melanogaster in the 19th century. These invasions constitute second waves, as degraded fragments were found for all three TEs. The composition of Opus and 412, but not of Blood, shows a pronounced geographic heterogeneity, likely due to founder effects during the invasions. Finally, we identified species from the Drosophila simulans complex as the likely origin of the TEs. We show that in total, seven TE families invaded D. melanogaster during the last 200y, thereby increasing the genome size by up to 1.2Mbp. We suggest that this high rate of TE invasions was likely triggered by human activity. Based on the analysis of strains and specimens sampled at different times, we provide a detailed timeline of TE invasions, making D. melanogaster the first organism where the invasion history of TEs during the last two centuries could be inferred.


Assuntos
Drosophila melanogaster , Retroelementos , Animais , Humanos , Drosophila melanogaster/genética , Retroelementos/genética , Genoma , Elementos de DNA Transponíveis , Evolução Molecular
2.
PLoS Genet ; 20(3): e1011201, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38530818

RESUMO

During the last few centuries D. melanogaster populations were invaded by several transposable elements, the most recent of which was thought to be the P-element between 1950 and 1980. Here we describe a novel TE, which we named Spoink, that has invaded D. melanogaster. It is a 5216nt LTR retrotransposon of the Ty3/gypsy superfamily. Relying on strains sampled at different times during the last century we show that Spoink invaded worldwide D. melanogaster populations after the P-element between 1983 and 1993. This invasion was likely triggered by a horizontal transfer from the D. willistoni group, much as the P-element. Spoink is probably silenced by the piRNA pathway in natural populations and about 1/3 of the examined strains have an insertion into a canonical piRNA cluster such as 42AB. Given the degree of genetic investigation of D. melanogaster it is perhaps surprising that Spoink was able to invade unnoticed.


Assuntos
Drosophila melanogaster , Retroelementos , Animais , Drosophila melanogaster/genética , RNA de Interação com Piwi , Drosophila/genética , Elementos de DNA Transponíveis
3.
Genome Res ; 34(3): 410-425, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38490738

RESUMO

To prevent the spread of transposable elements (TEs), hosts have developed sophisticated defense mechanisms. In mammals and invertebrates, a major defense mechanism operates through PIWI-interacting RNAs (piRNAs). To investigate the establishment of the host defense, we introduced the P-element, one of the most widely studied eukaryotic transposons, into naive lines of Drosophila erecta We monitored the invasion in three replicates for more than 50 generations by sequencing the genomic DNA (using short and long reads), the small RNAs, and the transcriptome at regular intervals. A piRNA-based host defense was rapidly established in two replicates (R1, R4) but not in a third (R2), in which P-element copy numbers kept increasing for over 50 generations. We found that the ping-pong cycle could not be activated in R2, although the ping-pong cycle is fully functional against other TEs. Furthermore, R2 had both insertions in piRNA clusters and siRNAs, suggesting that neither of them is sufficient to trigger the host defense. Our work shows that control of an invading TE requires activation of the ping-pong cycle and that this activation is a stochastic event that may fail in some populations, leading to a proliferation of TEs that ultimately threaten the integrity of the host genome.


Assuntos
Elementos de DNA Transponíveis , Drosophila , RNA Interferente Pequeno , Animais , RNA Interferente Pequeno/genética , Drosophila/genética , RNA de Interação com Piwi
4.
BMC Biol ; 21(1): 224, 2023 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-37858221

RESUMO

BACKGROUND: It is widely assumed that the invasion of a transposable element (TE) in mammals and invertebrates is stopped when a copy of the TE jumps into a piRNA cluster (i.e., the trap model). However, recent works, which for example showed that deletion of three major piRNA clusters has no effect on TE activity, cast doubt on the trap model. RESULTS: Here, we test the trap model from a population genetics perspective. Our simulations show that the composition of regions that act as transposon traps (i.e., potentially piRNA clusters) ought to deviate from regions that have no effect on TE activity. We investigated TEs in five Drosophila melanogaster strains using three complementary approaches to test whether the composition of piRNA clusters matches these expectations. We found that the abundance of TE families inside and outside of piRNA clusters is highly correlated, although this is not expected under the trap model. Furthermore, the distribution of the number of TE insertions in piRNA clusters is also much broader than expected. CONCLUSIONS: We found that the observed composition of piRNA clusters is not in agreement with expectations under the simple trap model. Dispersed piRNA producing TE insertions and temporal as well as spatial heterogeneity of piRNA clusters may account for these deviations.


Assuntos
Drosophila melanogaster , RNA de Interação com Piwi , Humanos , Animais , Drosophila melanogaster/genética , RNA Interferente Pequeno/genética , Motivação , Elementos de DNA Transponíveis/genética , Mamíferos/genética
5.
Genetics ; 225(4)2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-37819004

RESUMO

According to the prevailing view, the trap model, the activity of invading transposable elements (TEs) is greatly reduced when a TE copy jumps into a piRNA cluster, which triggers the emergence of piRNAs that silence the TE. One crucial component in the host defence are paramutations. Mediated by maternally deposited piRNAs, paramutations convert TE insertions into piRNA producing loci, thereby transforming selfish TEs into agents of the host defence. Despite this significant effect, the impact of paramutations on the dynamics of TE invasions remains unknown. To address this issue, we performed extensive forward simulations of TE invasions with piRNA clusters and paramutations. We found that paramutations significantly affect TE dynamics, by accelerating the silencing of TE invasions, reducing the number of insertions accumulating during the invasions and mitigating the fitness cost of TEs. We also demonstrate that piRNA production induced by paramutations, an epigenetically inherited trait, may be positively selected. Finally, we show that paramutations may account for three important open problems with the trap model. Firstly, paramutated TE insertions may compensate for the insufficient number of insertions in piRNA clusters observed in previous studies. Secondly, paramutations may explain the discrepancy between the observed and the expected abundance of different TE families in Drosophila melanogaster. Thirdly, piRNA clusters may be crucial to trigger the host defence, but paramutations render the clusters dispensable once the defence has been established. This could account for the lack of TE activation when three major piRNA clusters were deleted in a previous study.


Assuntos
Elementos de DNA Transponíveis , Drosophila melanogaster , Humanos , Animais , Elementos de DNA Transponíveis/genética , Drosophila melanogaster/genética , RNA Interferente Pequeno/genética , RNA de Interação com Piwi
6.
PLoS Genet ; 19(8): e1010914, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37643184

RESUMO

Suppression of transposable elements (TEs) is paramount to maintain genomic integrity and organismal fitness. In D. melanogaster, the flamenco locus is a master suppressor of TEs, preventing the mobilization of certain endogenous retrovirus-like TEs from somatic ovarian support cells to the germline. It is transcribed by Pol II as a long (100s of kb), single-stranded, primary transcript, and metabolized into ~24-32 nt Piwi-interacting RNAs (piRNAs) that target active TEs via antisense complementarity. flamenco is thought to operate as a trap, owing to its high content of recent horizontally transferred TEs that are enriched in antisense orientation. Using newly-generated long read genome data, which is critical for accurate assembly of repetitive sequences, we find that flamenco has undergone radical transformations in sequence content and even copy number across simulans clade Drosophilid species. Drosophila simulans flamenco has duplicated and diverged, and neither copy exhibits synteny with D. melanogaster beyond the core promoter. Moreover, flamenco organization is highly variable across D. simulans individuals. Next, we find that D. simulans and D. mauritiana flamenco display signatures of a dual-stranded cluster, with ping-pong signals in the testis and/or embryo. This is accompanied by increased copy numbers of germline TEs, consistent with these regions operating as functional dual-stranded clusters. Overall, the physical and functional diversity of flamenco orthologs is testament to the extremely dynamic consequences of TE arms races on genome organization, not only amongst highly related species, but even amongst individuals.


Assuntos
Drosophila melanogaster , Drosophila , Masculino , Animais , Drosophila/genética , Drosophila melanogaster/genética , Drosophila simulans/genética , Evolução Biológica , Elementos de DNA Transponíveis/genética , RNA de Interação com Piwi
7.
Mol Ecol ; 32(6): 1306-1322, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-34878692

RESUMO

Small RNAs produced from transposable element (TE)-rich sections of the genome, termed piRNA clusters, are a crucial component in the genomic defence against selfish DNA. In animals, it is thought the invasion of a TE is stopped when a copy of the TE inserts into a piRNA cluster, triggering the production of cognate small RNAs that silence the TE. Despite this importance for TE control, little is known about the evolutionary dynamics of piRNA clusters, mostly because these repeat-rich regions are difficult to assemble and compare. Here, we establish a framework for studying the evolution of piRNA clusters quantitatively. Previously introduced quality metrics and a newly developed software for multiple alignments of repeat annotations (Manna) allow us to estimate the level of polymorphism segregating in piRNA clusters and the divergence among homologous piRNA clusters. By studying 20 conserved piRNA clusters in multiple assemblies of four Drosophila species, we show that piRNA clusters are evolving rapidly. While 70%-80% of the clusters are conserved within species, the clusters share almost no similarity between species as closely related as D. melanogaster and D. simulans. Furthermore, abundant insertions and deletions are segregating within the Drosophila species. We show that the evolution of clusters is mainly driven by large insertions of recently active TEs and smaller deletions mostly in older TEs. The effect of these forces is so rapid that homologous clusters often do not contain insertions from the same TE families.


Assuntos
Drosophila melanogaster , Drosophila , Animais , Drosophila/genética , Drosophila melanogaster/genética , RNA de Interação com Piwi , Drosophila simulans , Elementos de DNA Transponíveis/genética , RNA
8.
Mol Biol Evol ; 39(7)2022 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-35731857

RESUMO

The popular trap model assumes that the invasions of transposable elements (TEs) in mammals and invertebrates are stopped by piRNAs that emerge after insertion of the TE into a piRNA cluster. It remains, however, still unclear which factors influence the dynamics of TE invasions. The activity of the TE (i.e., transposition rate) is one frequently discussed key factor. Here we take advantage of the temperature-dependent activity of the P-element, a widely studied eukaryotic TE, to test how TE activity affects the dynamics of a TE invasion. We monitored P-element invasion dynamics in experimental Drosophila simulans populations at hot and cold culture conditions. Despite marked differences in transposition rates, the P-element reached very similar copy numbers at both temperatures. The reduction of the insertion rate upon approaching the copy number plateau was accompanied by similar amounts of piRNAs against the P-element at both temperatures. Nevertheless, we also observed fewer P-element insertions in piRNA clusters than expected, which is not compatible with a simple trap model. The ping-pong cycle, which degrades TE transcripts, becomes typically active after the copy number plateaued. We generated a model, with few parameters, that largely captures the observed invasion dynamics. We conclude that the transposition rate has at the most only a minor influence on TE abundance, but other factors, such as paramutations or selection against TE insertions are shaping the TE composition.


Assuntos
Drosophila melanogaster , Evolução Molecular , Animais , Elementos de DNA Transponíveis/genética , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Drosophila simulans/genética , Mamíferos/genética , RNA Interferente Pequeno/genética
9.
Mol Ecol Resour ; 22(1): 102-121, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34181811

RESUMO

In most animals, it is thought that the proliferation of a transposable element (TE) is stopped when the TE jumps into a piRNA cluster. Despite this central importance, little is known about the composition and the evolutionary dynamics of piRNA clusters. This is largely because piRNA clusters are notoriously difficult to assemble as they are frequently composed of highly repetitive DNA. With long reads, we may finally be able to obtain reliable assemblies of piRNA clusters. Unfortunately, it is unclear how to generate and identify the best assemblies, as many assembly strategies exist and standard quality metrics are ignorant of TEs. To address these problems, we introduce several novel quality metrics that assess: (a) the fraction of completely assembled piRNA clusters, (b) the quality of the assembled clusters and (c) whether an assembly captures the overall TE landscape of an organisms (i.e. the abundance, the number of SNPs and internal deletions of all TE families). The requirements for computing these metrics vary, ranging from annotations of piRNA clusters to consensus sequences of TEs and genomic sequencing data. Using these novel metrics, we evaluate the effect of assembly algorithm, polishing, read length, coverage, residual polymorphisms and finally identify strategies that yield reliable assemblies of piRNA clusters. Based on an optimized approach, we provide assemblies for the two Drosophila melanogaster strains Canton-S and Pi2. About 80% of known piRNA clusters were assembled in both strains. Finally, we demonstrate the generality of our approach by extending our metrics to humans and Arabidopsis thaliana.


Assuntos
Drosophila melanogaster , RNA Interferente Pequeno , Animais , Arabidopsis/genética , Drosophila melanogaster/genética , Genômica , Humanos , RNA Interferente Pequeno/genética
10.
Mol Biol Evol ; 38(4): 1482-1497, 2021 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-33247725

RESUMO

It was long thought that solely three different transposable elements (TEs)-the I-element, the P-element, and hobo-invaded natural Drosophila melanogaster populations within the last century. By sequencing the "living fossils" of Drosophila research, that is, D. melanogaster strains sampled from natural populations at different time points, we show that a fourth TE, Tirant, invaded D. melanogaster populations during the past century. Tirant likely spread in D. melanogaster populations around 1938, followed by the I-element, hobo, and, lastly, the P-element. In addition to the recent insertions of the canonical Tirant, D. melanogaster strains harbor degraded Tirant sequences in the heterochromatin which are likely due to an ancient invasion, likely predating the split of D. melanogaster and D. simulans. These degraded insertions produce distinct piRNAs that were unable to prevent the novel Tirant invasion. In contrast to the I-element, P-element, and hobo, we did not find that Tirant induces any hybrid dysgenesis symptoms. This absence of apparent phenotypic effects may explain the late discovery of the Tirant invasion. Recent Tirant insertions were found in all investigated natural populations. Populations from Tasmania carry distinct Tirant sequences, likely due to a founder effect. By investigating the TE composition of natural populations and strains sampled at different time points, insertion site polymorphisms, piRNAs, and phenotypic effects, we provide a comprehensive study of a natural TE invasion.


Assuntos
Elementos de DNA Transponíveis , Drosophila melanogaster/genética , Animais , Feminino , RNA Interferente Pequeno
11.
Genome Biol Evol ; 12(11): 2139-2152, 2020 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-33210145

RESUMO

The P-element, one of the best understood eukaryotic transposable elements, spread in natural Drosophila melanogaster populations in the last century. It invaded American populations first and later spread to the Old World. Inferring this invasion route was made possible by a unique resource available in D. melanogaster: Many strains sampled from different locations over the course of the last century. Here, we test the hypothesis that the invasion route of the P-element may be reconstructed from extant population samples using internal deletions (IDs) as markers. These IDs arise at a high rate when DNA transposons, such as the P-element, are active. We suggest that inferring invasion routes is possible as: 1) the fraction of IDs increases in successively invaded populations, which also explains the striking differences in the ID content between American and European populations, and 2) successively invaded populations end up with similar sets of IDs. This approach allowed us to reconstruct the invasion route of the P-element with reasonable accuracy. Our approach also sheds light on the unknown timing of the invasion in African populations: We suggest that African populations were invaded after American but before European populations. Simulations of TE invasions in spatially distributed populations confirm that IDs may allow us to infer invasion routes. Our approach might be applicable to other DNA transposons in different host species.


Assuntos
Elementos de DNA Transponíveis , Drosophila melanogaster/genética , Fluxo Gênico , Modelos Genéticos , Animais , Deleção de Sequência
12.
Genome Biol Evol ; 12(5): 736-749, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-32219390

RESUMO

piRNA clusters are thought to repress transposable element (TE) activity in mammals and invertebrates. Here, we show that a simple population genetics model reveals a constraint on the size of piRNA clusters: The total size of the piRNA clusters of an organism must exceed 0.2% of a genome to repress TE invasions. Moreover, larger piRNA clusters accounting for up to 3% of the genome may be necessary when populations are small, transposition rates are high, and TE insertions are recessive. If piRNA clusters are too small, the load of deleterious TE insertions that accumulate during a TE invasion may drive populations extinct before an effective piRNA-based defense against the TE can be established. Our findings are solely based on three well-supported assumptions: 1) TEs multiply within genomes, 2) TEs are mostly deleterious, and 3) piRNA clusters act as transposon traps, where a single insertion in a cluster silences all TE copies in trans. Interestingly, the piRNA clusters of some species meet our observed minimum size requirements, whereas the clusters of other species do not. Species with small piRNA clusters, such as humans and mice, may experience severe fitness reductions during invasions of novel TEs, which is possibly even threatening the persistence of some populations. This work also raises the important question of how piRNA clusters evolve. We propose that the size of piRNA clusters may be at an equilibrium between evolutionary forces that act to expand and contract piRNA clusters.


Assuntos
Elementos de DNA Transponíveis , Evolução Molecular , Genética Populacional , Genoma , RNA Interferente Pequeno/genética , Seleção Genética , Animais , Humanos , Camundongos , Ratos
13.
Elife ; 92020 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-32083552

RESUMO

The pervasive occurrence of sexual dimorphism demonstrates different adaptive strategies of males and females. While different reproductive strategies of the two sexes are well-characterized, very little is known about differential functional requirements of males and females in their natural habitats. Here, we study the impact environmental change on the selection response in both sexes. Exposing replicated Drosophila populations to a novel temperature regime, we demonstrate sex-specific changes in gene expression, metabolic and behavioral phenotypes in less than 100 generations. This indicates not only different functional requirements of both sexes in the new environment but also rapid sex-specific adaptation. Supported by computer simulations we propose that altered sex-biased gene regulation from standing genetic variation, rather than new mutations, is the driver of rapid sex-specific adaptation. Our discovery of environmentally driven divergent functional requirements of males and females has important implications-possibly even for gender aware medical treatments.


Male and female animals of the same species sometimes differ in appearance and sexual behavior, a phenomenon known as sexual dimorphism. Both sexes share most of the same genes, but differences can emerge because of the way these are read by cells to create proteins ­ a process called gene expression. For instance, certain genes can be more expressed in males than in females, and vice-versa. Most studies into the emergence of sexual dimorphism have taken place in stable environments with few changes in climate or other factors. Therefore, the potential impact of environmental changes on sexual dimorphism has been largely overlooked. Here, Hsu et al. used genetic and computational approaches to investigate whether male and female fruit flies adapt differently to a new, hotter environment over several generations. The experiment showed that, after only 100 generations, the way that 60% of all genes were expressed evolved in a different direction in the two sexes. This led to differences in how the males and females made and broke down fat molecules, and in how their neurons operated. These expression changes also translated in differences for high-level biological processes. For instance, animals in the new settings ended up behaving differently, with the males at the end of the experiment spending more time chasing females than the ancestral flies. These findings demonstrate that male and female fruit flies adapt many biological processes (including metabolism and behaviors) differently to cope with changes in their environment, and that many different genes support these sex-specific adaptations. Ultimately, the work by Hsu et al. may inform medical strategies that take into account interactions between the patient's sex and their environment.


Assuntos
Adaptação Fisiológica/fisiologia , Drosophila melanogaster/fisiologia , Adaptação Fisiológica/genética , Animais , Feminino , Regulação da Expressão Gênica/fisiologia , Genes/fisiologia , Temperatura Alta , Masculino , Fatores Sexuais
14.
Evol Lett ; 4(1): 4-18, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32055407

RESUMO

Global climate change (GCC) increasingly threatens biodiversity through the loss of species, and the transformation of entire ecosystems. Many species are challenged by the pace of GCC because they might not be able to respond fast enough to changing biotic and abiotic conditions. Species can respond either by shifting their range, or by persisting in their local habitat. If populations persist, they can tolerate climatic changes through phenotypic plasticity, or genetically adapt to changing conditions depending on their genetic variability and census population size to allow for de novo mutations. Otherwise, populations will experience demographic collapses and species may go extinct. Current approaches to predicting species responses to GCC begin to combine ecological and evolutionary information for species distribution modelling. Including an evolutionary dimension will substantially improve species distribution projections which have not accounted for key processes such as dispersal, adaptive genetic change, demography, or species interactions. However, eco-evolutionary models require new data and methods for the estimation of a species' adaptive potential, which have so far only been available for a small number of model species. To represent global biodiversity, we need to devise large-scale data collection strategies to define the ecology and evolutionary potential of a broad range of species, especially of keystone species of ecosystems. We also need standardized and replicable modelling approaches that integrate these new data to account for eco-evolutionary processes when predicting the impact of GCC on species' survival. Here, we discuss different genomic approaches that can be used to investigate and predict species responses to GCC. This can serve as guidance for researchers looking for the appropriate experimental setup for their particular system. We furthermore highlight future directions for moving forward in the field and allocating available resources more effectively, to implement mitigation measures before species go extinct and ecosystems lose important functions.

15.
Mol Biol Evol ; 36(12): 2890-2905, 2019 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-31400203

RESUMO

Evolve and resequence (E&R) studies are frequently used to dissect the genetic basis of quantitative traits. By subjecting a population to truncating selection for several generations and estimating the allele frequency differences between selected and nonselected populations using next-generation sequencing (NGS), the loci contributing to the selected trait may be identified. The role of different parameters, such as, the population size or the number of replicate populations has been examined in previous works. However, the influence of the selection regime, that is the strength of truncating selection during the experiment, remains little explored. Using whole genome, individual based forward simulations of E&R studies, we found that the power to identify the causative alleles may be maximized by gradually increasing the strength of truncating selection during the experiment. Notably, such an optimal selection regime comes at no or little additional cost in terms of sequencing effort and experimental time. Interestingly, we also found that a selection regime which optimizes the power to identify the causative loci is not necessarily identical to a regime that maximizes the phenotypic response. Finally, our simulations suggest that an E&R study with an optimized selection regime may have a higher power to identify the genetic basis of quantitative traits than a genome-wide association study, highlighting that E&R is a powerful approach for finding the loci underlying complex traits.


Assuntos
Evolução Molecular , Técnicas Genéticas , Modelos Genéticos , Característica Quantitativa Herdável , Seleção Genética , Animais , Simulação por Computador , Drosophila melanogaster
16.
Genome Biol ; 20(1): 169, 2019 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-31416462

RESUMO

BACKGROUND: The combination of experimental evolution with whole-genome resequencing of pooled individuals, also called evolve and resequence (E&R) is a powerful approach to study the selection processes and to infer the architecture of adaptive variation. Given the large potential of this method, a range of software tools were developed to identify selected SNPs and to measure their selection coefficients. RESULTS: In this benchmarking study, we compare 15 test statistics implemented in 10 software tools using three different scenarios. We demonstrate that the power of the methods differs among the scenarios, but some consistently outperform others. LRT-1, CLEAR, and the CMH test perform best despite LRT-1 and the CMH test not requiring time series data. CLEAR provides the most accurate estimates of selection coefficients. CONCLUSION: This benchmark study will not only facilitate the analysis of already existing data, but also affect the design of future data collections.


Assuntos
Benchmarking , Seleção Genética , Análise de Sequência de DNA , Software , Animais , Simulação por Computador , Drosophila melanogaster/genética , Análise de Componente Principal
17.
Mol Ecol Resour ; 19(5): 1346-1354, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31056858

RESUMO

Transposable elements (TEs) are selfish DNA sequences that multiply within host genomes. They are present in most species investigated so far at varying degrees of abundance and sequence diversity. The TE composition may not only vary between but also within species and could have important biological implications. Variation in prevalence among populations may for example indicate a recent TE invasion, whereas sequence variation could indicate the presence of hyperactive or inactive forms. Gaining unbiased estimates of TE composition is thus vital for understanding the evolutionary dynamics of transposons. To this end, we developed DeviaTE, a tool to analyse and visualize TE abundance using Illumina or Sanger sequencing reads. Our tool requires sequencing reads of one or more samples (tissue, individual or population) and consensus sequences of TEs. It generates a table and a visual representation of TE composition. This allows for an intuitive assessment of coverage, sequence divergence, segregating SNPs and indels, as well as the presence of internal and terminal deletions. By contrasting the coverage between TEs and single copy genes, DeviaTE derives unbiased estimates of TE abundance. We show that naive approaches, which do not consider regions spanned by internal deletions, may substantially underestimate TE abundance. Using published data we demonstrate that DeviaTE can be used to study the TE composition within samples, identify clinal variation in TEs, compare TE diversity among species, and monitor TE invasions. Finally we present careful validations with publicly available and simulated data. DeviaTE is implemented in Python and distributed under the GPLv3 (https://github.com/W-L/deviaTE).


Assuntos
Biologia Computacional/métodos , Sequências Repetitivas Dispersas , Análise de Sequência de DNA/métodos , Software
18.
Mol Biol Evol ; 36(7): 1457-1472, 2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-30968135

RESUMO

In mammals and invertebrates, the proliferation of an invading transposable element (TE) is thought to be stopped by an insertion into a piRNA cluster. Here, we explore the dynamics of TE invasions under this trap model using computer simulations. We found that piRNA clusters confer a substantial benefit, effectively preventing extinction of host populations from a proliferation of deleterious TEs. TE invasions consist of three distinct phases: first, the TE amplifies within the population, next TE proliferation is stopped by segregating cluster insertions, and finally the TE is inactivated by fixation of a cluster insertion. Suppression by segregating cluster insertions is unstable and bursts of TE activity may yet occur. The transposition rate and the population size mostly influence the length of the phases but not the amount of TEs accumulating during an invasion. Solely, the size of piRNA clusters was identified as a major factor influencing TE abundance. We found that a single nonrecombining cluster is more efficient in stopping invasions than clusters distributed over several chromosomes. Recombination among cluster sites makes it necessary that each diploid carries, on the average, four cluster insertions to stop an invasion. Surprisingly, negative selection in a model with piRNA clusters can lead to a novel equilibrium state, where TE copy numbers remain stable despite only some individuals in a population carrying a cluster insertion. In Drosophila melanogaster, the trap model accounts for the abundance of TEs produced in the germline but fails to predict the abundance of TEs produced in the soma.


Assuntos
Elementos de DNA Transponíveis , Modelos Genéticos , RNA Interferente Pequeno , Animais , Drosophila melanogaster , Seleção Genética
19.
PLoS Biol ; 17(2): e3000128, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30716062

RESUMO

The genetic architecture of adaptive traits is of key importance to predict evolutionary responses. Most adaptive traits are polygenic-i.e., result from selection on a large number of genetic loci-but most molecularly characterized traits have a simple genetic basis. This discrepancy is best explained by the difficulty in detecting small allele frequency changes (AFCs) across many contributing loci. To resolve this, we use laboratory natural selection to detect signatures for selective sweeps and polygenic adaptation. We exposed 10 replicates of a Drosophila simulans population to a new temperature regime and uncovered a polygenic architecture of an adaptive trait with high genetic redundancy among beneficial alleles. We observed convergent responses for several phenotypes-e.g., fitness, metabolic rate, and fat content-and a strong polygenic response (99 selected alleles; mean s = 0.059). However, each of these selected alleles increased in frequency only in a subset of the evolving replicates. We discerned different evolutionary paradigms based on the heterogeneous genomic patterns among replicates. Redundancy and quantitative trait (QT) paradigms fitted the experimental data better than simulations assuming independent selective sweeps. Our results show that natural D. simulans populations harbor a vast reservoir of adaptive variation facilitating rapid evolutionary responses using multiple alternative genetic pathways converging at a new phenotypic optimum. This key property of beneficial alleles requires the modification of testing strategies in natural populations beyond the search for convergence on the molecular level.


Assuntos
Adaptação Fisiológica/genética , Drosophila simulans/genética , Drosophila simulans/fisiologia , Herança Multifatorial/genética , Alelos , Animais , Evolução Biológica , Aptidão Genética , Heterogeneidade Genética , Genoma de Inseto , Haplótipos/genética , Fenótipo , Polimorfismo de Nucleotídeo Único/genética , Locos de Características Quantitativas/genética
20.
PLoS Comput Biol ; 14(8): e1006413, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30114186

RESUMO

Evolve and Resequencing (E&R) studies allow us to monitor adaptation at the genomic level. By sequencing evolving populations at regular time intervals, E&R studies promise to shed light on some of the major open questions in evolutionary biology such as the repeatability of evolution and the molecular basis of adaptation. However, data interpretation, statistical analysis and the experimental design of E&R studies increasingly require simulations of evolving populations, a task that is difficult to accomplish with existing tools, which may i) be too slow, ii) require substantial reformatting of data, iii) not support an adaptive scenario of interest or iv) not sufficiently capture the biology of the used model organism. Therefore we developed MimicrEE2, a multi-threaded Java program for genome-wide forward simulations of evolving populations. MimicrEE2 enables the convenient usage of available genomic resources, supports biological particulars of model organism frequently used in E&R studies and offers a wide range of different adaptive models (selective sweeps, polygenic adaptation, epistasis). Due to its user-friendly and efficient design MimicrEE2 will facilitate simulations of E&R studies even for small labs with limited bioinformatics expertise or computational resources. Additionally, the scripts provided for executing MimicrEE2 on a computer cluster permit the coverage even of a large parameter space. MimicrEE2 runs on any computer with Java installed. It is distributed under the GPLv3 license at https://sourceforge.net/projects/mimicree2/.


Assuntos
Biologia Computacional/métodos , Genômica/métodos , Análise de Sequência de DNA/métodos , Algoritmos , Animais , Sequência de Bases , Evolução Biológica , Simulação por Computador , Bases de Dados Genéticas , Evolução Molecular , Perfilação da Expressão Gênica/métodos , Redes Reguladoras de Genes/genética , Genoma/genética , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Software
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA