Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
2.
Immunity ; 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38776918

RESUMO

Peripheral CD8+ T cell tolerance is a checkpoint in both autoimmune disease and anti-cancer immunity. Despite its importance, the relationship between tolerance-induced states and other CD8+ T cell differentiation states remains unclear. Using flow cytometric phenotyping, single-cell RNA sequencing (scRNA-seq), and chromatin accessibility profiling, we demonstrated that in vivo peripheral tolerance to a self-antigen triggered a fundamentally distinct differentiation state separate from exhaustion, memory, and functional effector cells but analogous to cells defectively primed against tumors. Tolerant cells diverged early and progressively from effector cells, adopting a transcriptionally and epigenetically distinct state within 60 h of antigen encounter. Breaching tolerance required the synergistic actions of strong T cell receptor (TCR) signaling and inflammation, which cooperatively induced gene modules that enhanced protein translation. Weak TCR signaling during bystander infection failed to breach tolerance due to the uncoupling of effector gene expression from protein translation. Thus, tolerance engages a distinct differentiation trajectory enforced by protein translation defects.

3.
Nat Immunol ; 25(5): 860-872, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38632339

RESUMO

Adaptive immunity relies on specialized effector functions elicited by lymphocytes, yet how antigen recognition activates appropriate effector responses through nonspecific signaling intermediates is unclear. Here we examined the role of chromatin priming in specifying the functional outputs of effector T cells and found that most of the cis-regulatory landscape active in effector T cells was poised early in development before the expression of the T cell antigen receptor. We identified two principal mechanisms underpinning this poised landscape: the recruitment of the nucleosome remodeler mammalian SWItch/Sucrose Non-Fermentable (mSWI/SNF) by the transcription factors RUNX1 and PU.1 to establish chromatin accessibility at T effector loci; and a 'relay' whereby the transcription factor BCL11B succeeded PU.1 to maintain occupancy of the chromatin remodeling complex mSWI/SNF together with RUNX1, after PU.1 silencing during lineage commitment. These mechanisms define modes by which T cells acquire the potential to elicit specialized effector functions early in their ontogeny and underscore the importance of integrating extrinsic cues to the developmentally specified intrinsic program.


Assuntos
Subunidade alfa 2 de Fator de Ligação ao Core , Proteínas Proto-Oncogênicas , Proteínas Repressoras , Transativadores , Fatores de Transcrição , Proteínas Supressoras de Tumor , Proteínas Proto-Oncogênicas/metabolismo , Animais , Transativadores/metabolismo , Transativadores/genética , Camundongos , Subunidade alfa 2 de Fator de Ligação ao Core/metabolismo , Subunidade alfa 2 de Fator de Ligação ao Core/genética , Proteínas Repressoras/metabolismo , Proteínas Repressoras/genética , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Proteínas Supressoras de Tumor/metabolismo , Proteínas Supressoras de Tumor/genética , Camundongos Endogâmicos C57BL , Proteínas Cromossômicas não Histona/metabolismo , Linfócitos T/imunologia , Linfócitos T/metabolismo , Camundongos Knockout , Montagem e Desmontagem da Cromatina , Diferenciação Celular/imunologia
4.
Cell Host Microbe ; 32(3): 396-410.e6, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38359828

RESUMO

Antibiotic resistance and evasion are incompletely understood and complicated by the fact that murine interval dosing models do not fully recapitulate antibiotic pharmacokinetics in humans. To better understand how gastrointestinal bacteria respond to antibiotics, we colonized germ-free mice with a pan-susceptible genetically barcoded Escherichia coli clinical isolate and administered the antibiotic cefepime via programmable subcutaneous pumps, allowing closer emulation of human parenteral antibiotic dynamics. E. coli was only recovered from intestinal tissue, where cefepime concentrations were still inhibitory. Strikingly, "some" E. coli isolates were not cefepime resistant but acquired mutations in genes involved in polysaccharide capsular synthesis increasing their invasion and survival within human intestinal cells. Deleting wbaP involved in capsular polysaccharide synthesis mimicked this phenotype, allowing increased invasion of colonocytes where cefepime concentrations were reduced. Additionally, "some" mutant strains exhibited a persister phenotype upon further cefepime exposure. This work uncovers a mechanism allowing "select" gastrointestinal bacteria to evade antibiotic treatment.


Assuntos
Antibacterianos , Escherichia coli , Humanos , Animais , Camundongos , Cefepima , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Bactérias , Trato Gastrointestinal/microbiologia , Polissacarídeos , Testes de Sensibilidade Microbiana , Mamíferos
5.
Cell Host Microbe ; 31(9): 1523-1538.e10, 2023 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-37657443

RESUMO

Manipulation of the gut microbiome using live biotherapeutic products shows promise for clinical applications but remains challenging to achieve. Here, we induced dysbiosis in 56 healthy volunteers using antibiotics to test a synbiotic comprising the infant gut microbe, Bifidobacterium longum subspecies infantis (B. infantis), and human milk oligosaccharides (HMOs). B. infantis engrafted in 76% of subjects in an HMO-dependent manner, reaching a relative abundance of up to 81%. Changes in microbiome composition and gut metabolites reflect altered recovery of engrafted subjects compared with controls. Engraftment associates with increases in lactate-consuming Veillonella, faster acetate recovery, and changes in indolelactate and p-cresol sulfate, metabolites that impact host inflammatory status. Furthermore, Veillonella co-cultured in vitro and in vivo with B. infantis and HMO converts lactate produced by B. infantis to propionate, an important mediator of host physiology. These results suggest that the synbiotic reproducibly and predictably modulates recovery of a dysbiotic microbiome.


Assuntos
Microbioma Gastrointestinal , Microbiota , Simbióticos , Lactente , Humanos , Adulto , Disbiose , Leite Humano , Ácido Láctico , Veillonella
6.
bioRxiv ; 2023 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-37292835

RESUMO

Mixed phenotype acute leukemia (MPAL) is a leukemia whose biologic drivers are poorly understood, therapeutic strategy remains unclear, and prognosis is poor. We performed multiomic single cell (SC) profiling of 14 newly diagnosed adult MPAL patients to characterize the immunophenotypic, genetic, and transcriptional landscapes of MPAL. We show that neither genetic profile nor transcriptome reliably correlate with specific MPAL immunophenotypes. However, progressive acquisition of mutations is associated with increased expression of immunophenotypic markers of immaturity. Using SC transcriptional profiling, we find that MPAL blasts express a stem cell-like transcriptional profile distinct from other acute leukemias and indicative of high differentiation potential. Further, patients with the highest differentiation potential demonstrated inferior survival in our dataset. A gene set score, MPAL95, derived from genes highly enriched in this cohort, is applicable to bulk RNA sequencing data and was predictive of survival in an independent patient cohort, suggesting utility for clinical risk stratification.

7.
Bioinform Adv ; 3(1): vbad077, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37359721

RESUMO

Motivation: Single-cell proteomics provide unprecedented resolution to examine biological processes. Customized data analysis and facile data visualization are crucial for scientific discovery. Further, user-friendly data analysis and visualization software that is easily accessible for the general scientific community is essential. Results: We have created a web server, IsoAnalytics, that gives users without computational or bioinformatics background the ability to directly analyze and interactively visualize data obtained from the Isoplexis single cell technology platform. We envision this open-sourced web server will increase research productivity and serve as a free, competitive alternative for single-cell proteomics research. Availability and implementation: IsoAnalytics is free and available at: https://cdc.biohpc.swmed.edu/isoplexis/ and is implemented in Python, with all major browsers supported. Code for IsoAnalytics is free and available at: https://github.com/zhanxw/Isoplexis_Data_Analysis. Supplementary information: Supplementary data are available at Bioinformatics Advances online.

8.
Sci Immunol ; 8(81): eabo2003, 2023 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-36867675

RESUMO

Gut microbiota, specifically gut bacteria, are critical for effective immune checkpoint blockade therapy (ICT) for cancer. The mechanisms by which gut microbiota augment extraintestinal anticancer immune responses, however, are largely unknown. Here, we find that ICT induces the translocation of specific endogenous gut bacteria into secondary lymphoid organs and subcutaneous melanoma tumors. Mechanistically, ICT induces lymph node remodeling and dendritic cell (DC) activation, which facilitates the translocation of a selective subset of gut bacteria to extraintestinal tissues to promote optimal antitumor T cell responses in both the tumor-draining lymph nodes (TDLNs) and the primary tumor. Antibiotic treatment results in decreased gut microbiota translocation into mesenteric lymph nodes (MLNs) and TDLNs, diminished DC and effector CD8+ T cell responses, and attenuated responses to ICT. Our findings illuminate a key mechanism by which gut microbiota promote extraintestinal anticancer immunity.


Assuntos
Microbioma Gastrointestinal , Melanoma , Humanos , Inibidores de Checkpoint Imunológico , Linfócitos T CD8-Positivos , Linfonodos
9.
bioRxiv ; 2023 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-36711614

RESUMO

In vitro systems have provided great insight into the mechanisms of antibiotic resistance. Yet, in vitro approaches cannot reflect the full complexity of what transpires within a host. As the mammalian gut is host to trillions of resident bacteria and thus a potential breeding ground for antibiotic resistance, we sought to better understand how gut bacteria respond to antibiotic treatment in vivo . Here, we colonized germ-free mice with a genetically barcoded antibiotic pan-susceptible Escherichia coli clinical isolate and then administered the antibiotic cefepime via programmable subcutaneous pumps which allowed for closer emulation of human parenteral antibiotic pharmacokinetics/dynamics. After seven days of antibiotics, we were unable to culture E. coli from feces. We were, however, able to recover barcoded E. coli from harvested gastrointestinal (GI) tissue, despite high GI tract and plasma cefepime concentrations. Strikingly, these E. coli isolates were not resistant to cefepime but had acquired mutations â€" most notably in the wbaP gene, which encodes an enzyme required for the initiation of the synthesis of the polysaccharide capsule and lipopolysaccharide O antigen - that increased their ability to invade and survive within intestinal cells, including cultured human colonocytes. Further, these E. coli mutants exhibited a persister phenotype when exposed to cefepime, allowing for greater survival to pulses of cefepime treatment when compared to the wildtype strain. Our findings highlight a mechanism by which bacteria in the gastrointestinal tract can adapt to antibiotic treatment by increasing their ability to persist during antibiotic treatment and invade intestinal epithelial cells where antibiotic concentrations are substantially reduced.

10.
bioRxiv ; 2023 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-36711640

RESUMO

Motivation: Single-cell proteomics provide unprecedented resolution to examine biological processes. Customized data analysis and facile data visualization are crucial for scientific discovery. Further, userfriendly data analysis and visualization software that is easily accessible for the general scientific community is essential. Results: We have created a web server, IsoAnalytics , that gives users without computational or bioinformatics background the ability to directly analyze and interactively visualize data obtained from the Isoplexis single cell technology platform. We envision this open-sourced web server will increase research productivity and serve as a free, competitive alternative for single-cell proteomics research. Contact: Andrew.Koh@utsouthwestern.edu and Xiaowei.Zhan@utsouthwestern.edu. Availability: IsoAnalytics is free and available at: https://cdc.biohpc.swmed.edu/isoplexis/ and is implemented in Python, with all major browsers supported. Code for IsoAnalytics is free and available at: https://github.com/zhanxw/Isoplexis_Data_Analysis . Supplementary Information: Supplementary data are available at Bioinformatics online.

11.
J Pediatr Gastroenterol Nutr ; 75(5): 564-571, 2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-36305880

RESUMO

OBJECTIVES: Tachygastria is a gastric dysrhythmia (>4 to ≤9 cycles per minute, cpm) associated with gastric hypomotility and gastrointestinal disorders. Healthy preterm infants spend more time in tachygastria than adults; however, normative values are not defined. We sought to determine the percent of time preterm infants spend in tachygastria. METHODS: We conducted a longitudinal, prospective cohort study with weekly electrogastrography (EGG) recordings in 51 preterm <34 weeks' gestation and 5 term (reference) infants. We calculated percentage recording time in tachygastria (% tachygastria) and determined the mean ± standard deviation (SD) across EGG sessions. Mixed effects model was performed to test weekly variance in % tachygastria and gestational age effect. Successive pre- and post-prandial measurements were obtained to assess reproducibility of % tachygastria. We compared time to achieve full feeds between subjects with % tachygastria within 1 SD from the mean versus % tachygastria >1 SD from mean. RESULTS: Three hundred seventy-six EGG sessions were completed (N = 56). Mean % tachygastria was 40% with SD ±5%. We demonstrated no change in % tachygastria across 9 postnatal weeks (P = 0.70) and no gestational age effect. No difference was demonstrated between successive pre- (P = 0.91) and post-prandial (P = 0.96) % tachygastria. Infants with 35%-45% tachygastria (within 1 SD from mean) had higher gestational age and less time to achieve full feeds than infants with <35% or >45% tachygastria. CONCLUSIONS: EGG is a reproducible tool to assess % tachygastria in preterm infants. Clinical significance of increased or decreased % tachygastria needs further investigation to validate if 35%-45% tachygastria is safe for feeding.


Assuntos
Recém-Nascido Prematuro , Estômago , Lactente , Recém-Nascido , Humanos , Estudos Longitudinais , Estudos Prospectivos , Reprodutibilidade dos Testes
12.
J Mol Biol ; 434(15): 167693, 2022 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-35777465

RESUMO

Human microbiome consists of trillions of microorganisms. Microbiota can modulate the host physiology through molecule and metabolite interactions. Integrating microbiome and metabolomics data have the potential to predict different diseases more accurately. Yet, most datasets only measure microbiome data but without paired metabolome data. Here, we propose a novel integrative modeling framework, Microbiome-based Supervised Contrastive Learning Framework (MB-SupCon). MB-SupCon integrates microbiome and metabolome data to generate microbiome embeddings, which can be used to improve the prediction accuracy in datasets that only measure microbiome data. As a proof of concept, we applied MB-SupCon on 720 samples with paired 16S microbiome data and metabolomics data from patients with type 2 diabetes. MB-SupCon outperformed existing prediction methods and achieved high average prediction accuracies for insulin resistance status (84.62%), sex (78.98%), and race (80.04%). Moreover, the microbiome embeddings form separable clusters for different covariate groups in the lower-dimensional space, which enhances data visualization. We also applied MB-SupCon on a large inflammatory bowel disease study and observed similar advantages. Thus, MB-SupCon could be broadly applicable to improve microbiome prediction models in multi-omics disease studies.


Assuntos
Metaboloma , Microbiota , Aprendizado de Máquina Supervisionado , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/microbiologia , Humanos , Doenças Inflamatórias Intestinais/genética , Doenças Inflamatórias Intestinais/microbiologia , Metabolômica/métodos , RNA Ribossômico 16S/genética
13.
Cell Host Microbe ; 30(5): 712-725.e7, 2022 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-35504279

RESUMO

Predictable and sustainable engraftment of live biotherapeutic products into the human gut microbiome is being explored as a promising way to modulate the human gut microbiome. We utilize a synbiotic approach pairing the infant gut microbe Bifidobacterium longum subspecies infantis (B. infantis) and human milk oligosaccharides (HMO). B. infantis, which is typically absent in adults, engrafts into healthy adult microbiomes in an HMO-dependent manner at a relative abundance of up to 25% of the bacterial population without antibiotic pretreatment or adverse effects. Corresponding changes in metabolites are detected. Germ-free mice transplanted with dysbiotic human microbiomes also successfully engraft with B. infantis in an HMO-dependent manner, and the synbiotic augments butyrate levels both in this in vivo model and in in vitro cocultures of the synbiotic with specific Firmicutes species. Finally, the synbiotic inhibits the growth of enteropathogens in vitro. Our findings point to a potential safe mechanism for ameliorating dysbioses characteristic of numerous human diseases.


Assuntos
Microbiota , Simbióticos , Animais , Antibacterianos/metabolismo , Disbiose/metabolismo , Disbiose/terapia , Humanos , Lactente , Camundongos , Leite Humano/microbiologia , Oligossacarídeos/metabolismo
14.
Cancers (Basel) ; 14(5)2022 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-35267634

RESUMO

Antibiotic administration is associated with worse clinical outcomes and changes to the gut microbiome in cancer patients receiving immune checkpoint inhibitors (ICI). However, the effects of antibiotics on systemic immune function are unknown. We, therefore, evaluated antibiotic exposure, therapeutic responses, and multiplex panels of 40 serum cytokines and 124 antibodies at baseline and six weeks after ICI initiation, with p < 0.05 and false discovery rate (FDR) < 0.2 considered significant. A total of 251 patients were included, of whom the 135 (54%) who received antibiotics had lower response rates and shorter survival. Patients who received antibiotics prior to ICI initiation had modestly but significantly lower baseline levels of nucleolin, MDA5, c-reactive protein, and liver cytosol antigen type 1 (LC1) antibodies, as well as higher levels of heparin sulfate and Matrigel antibodies. After ICI initiation, antibiotic-treated patients had significantly lower levels of MDA5, CENP.B, and nucleolin antibodies. Although there were no clear differences in cytokines in the overall cohort, in the lung cancer subset (53% of the study population), we observed differences in IFN-γ, IL-8, and macrophage inflammatory proteins. In ICI-treated patients, antibiotic exposure is associated with changes in certain antibodies and cytokines. Understanding the relationship between these factors may improve the clinical management of patients receiving ICI.

15.
Immunol Rev ; 305(1): 59-76, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34545959

RESUMO

The emergence of antigen receptor diversity in clonotypic lymphocytes drove the evolution of a novel gene, Aire, that enabled the adaptive immune system to discriminate foreign invaders from self-constituents. AIRE functions in the epithelial cells of the thymus to express genes highly restricted to alternative cell lineages. This somatic plasticity facilitates the selection of a balanced repertoire of T cells that protects the host from harmful self-reactive clones, yet maintains a wide range of affinities for virtually any foreign antigen. Here, we review the latest understanding of AIRE's molecular actions with a focus on its interplay with chromatin. We argue that AIRE is a multi-valent chromatin effector that acts late in the transcription cycle to modulate the activity of previously poised non-coding regulatory elements of tissue-specific genes. We postulate a role for chromatin instability-caused in part by ATP-dependent chromatin remodeling-that variably sets the scope of the accessible landscape on which AIRE can act. We highlight AIRE's intrinsic repressive function and its relevance in providing feedback control. We synthesize these recent advances into a putative model for the mechanistic modes by which AIRE triggers ectopic transcription for immune repertoire selection.


Assuntos
Cromatina , Expressão Ectópica do Gene , Cromatina/genética , Cromatina/metabolismo , Células Epiteliais/metabolismo , Humanos , Linfócitos T , Timo
16.
Transplant Cell Ther ; 28(2): 113.e1-113.e8, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34775145

RESUMO

Total body irradiation is an important part of the conditioning regimens frequently used to prepare patients for allogeneic hematopoietic stem cell transplantation (SCT). Volumetric-modulated arc therapy enabled total body irradiation (VMAT-TBI), an alternative to conventional TBI (cTBI), is a novel radiotherapy treatment technique that has been implemented and investigated in our institution. The purpose of this study is to (1) report our six-year clinical experience in terms of treatment planning strategy and delivery time and (2) evaluate the clinical outcomes and toxicities in our cohort of patients treated with VMAT-TBI. This is a retrospective single center study. Forty-four patients at our institution received VMAT-TBI and chemotherapy conditioning followed by allogeneic SCT between 2014 and 2020. Thirty-two patients (73%) received standard-dose TBI (12-13.2 Gy in 6-8 fractions twice daily), whereas 12 (27%) received low-dose TBI (2-4 Gy in one fraction). Treatment planning, delivery, and treatment outcome data including overall survival (OS), relapse-free survival (RFS), and toxicities were analyzed. The developed VMAT-TBI planning strategy consistently generated plans satisfying our dose constraints, with planning target volume coverage >90%, mean lung dose ∼50% to 75% of prescription dose, and minimal hotspots in critical organs. Most of the treatment deliveries were <100 minutes (range 33-147, mean 72). The median follow-up was 26 months. At the last follow-up, 34 of 44 (77%) of patients were alive, with 1- and 2-year OS of 90% and 79% and RFS of 88% and 71%, respectively. The most common grade 3+ toxicities observed were mucositis (31 patients [71%]) and nephrotoxicity (6 patients [13%]), both of which were deemed multifactorial in cause. Four patients (9%) in standard-dose cohort developed grade 3+ pneumonitis, with 3 cases in the setting of documented respiratory infection and only 1 (2%) deemed likely related to radiation alone. VMAT-TBI provides a safe alternative to cTBI. The dose modulation capability of VMAT-TBI may lead to new treatment strategies, such as simultaneous boost and further critical organ sparing, for better malignant cell eradication, immune suppression, and lower toxicities.


Assuntos
Radioterapia de Intensidade Modulada , Humanos , Órgãos em Risco/efeitos da radiação , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia de Intensidade Modulada/efeitos adversos , Estudos Retrospectivos , Resultado do Tratamento , Irradiação Corporal Total
17.
mBio ; 12(6): e0287821, 2021 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-34724818

RESUMO

Candida albicans is a pathobiont that colonizes multiple niches in the body including the gastrointestinal (GI) tract but is also responsible for both mucosal and systemic infections. Despite its prevalence as a human commensal, the murine GI tract is generally refractory to colonization with the C. albicans reference isolate SC5314. Here, we identify two C. albicans isolates, 529L and CHN1, that stably colonize the murine GI tract in three different animal facilities under conditions where SC5314 is lost from this niche. Analysis of the bacterial microbiota did not show notable differences among mice colonized with the three C. albicans strains. We compared the genotypes and phenotypes of these three strains and identified thousands of single nucleotide polymorphisms (SNPs) and multiple phenotypic differences, including their ability to grow and filament in response to nutritional cues. Despite striking filamentation differences under laboratory conditions, however, analysis of cell morphology in the GI tract revealed that the three isolates exhibited similar filamentation properties in this in vivo niche. Notably, we found that SC5314 is more sensitive to the antimicrobial peptide CRAMP, and the use of CRAMP-deficient mice modestly increased the ability of SC5314 to colonize the GI tract relative to CHN1 and 529L. These studies provide new insights into how strain-specific differences impact C. albicans traits in the host and advance CHN1 and 529L as relevant strains to study C. albicans pathobiology in its natural host niche. IMPORTANCE Understanding how fungi colonize the GI tract is increasingly recognized as highly relevant to human health. The animal models used to study Candida albicans commensalism commonly rely on altering the host microbiome (via antibiotic treatment or defined diets) to establish successful GI colonization by the C. albicans reference isolate SC5314. Here, we characterize two C. albicans isolates that can colonize the murine GI tract without antibiotic treatment and can therefore be used as tools for studying fungal commensalism. Importantly, experiments were replicated in three different animal facilities and utilized three different mouse strains. Differential colonization between fungal isolates was not associated with alterations in the bacterial microbiome but rather with distinct responses to CRAMP, a host antimicrobial peptide. This work emphasizes the importance of C. albicans intraspecies variation as well as host antimicrobial defense mechanisms in defining the outcome of commensal interactions.


Assuntos
Candida albicans/crescimento & desenvolvimento , Microbioma Gastrointestinal , Trato Gastrointestinal/microbiologia , Animais , Candida albicans/classificação , Candida albicans/genética , Candida albicans/fisiologia , Feminino , Genótipo , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C3H , Camundongos Endogâmicos C57BL , Simbiose
18.
Curr Opin Microbiol ; 63: 29-35, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34111679

RESUMO

Candida species are among the most prevalent and abundant members of the gut mycobiota, with Candida albicans (CA) being the most prominent member. CA colonizes numerous mucosal surfaces, most notably the gastrointestinal (GI) and genitourinary tracts. In a healthy host, CA is a pathobiont that exists as a commensal but can become pathogenic if the host's immune system becomes suppressed. The microbial and/or host factors that dictate CA's ability to colonize mucosal surfaces and its ability to disseminate remain of great interest. Here, we review the recent advances and insights regarding Candida colonization and dissemination of the mammalian GI tract.


Assuntos
Candida , Trato Gastrointestinal , Animais , Candida albicans , Mucosa , Simbiose
19.
Mol Biol Evol ; 38(10): 4493-4504, 2021 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-34175926

RESUMO

Bacteriophages and bacterial toxins are promising antibacterial agents to treat infections caused by multidrug-resistant (MDR) bacteria. In fact, bacteriophages have recently been successfully used to treat life-threatening infections caused by MDR bacteria (Schooley RT, Biswas B, Gill JJ, Hernandez-Morales A, Lancaster J, Lessor L, Barr JJ, Reed SL, Rohwer F, Benler S, et al. 2017. Development and use of personalized bacteriophage-based therapeutic cocktails to treat a patient with a disseminated resistant Acinetobacter baumannii infection. Antimicrob Agents Chemother. 61(10); Chan BK, Turner PE, Kim S, Mojibian HR, Elefteriades JA, Narayan D. 2018. Phage treatment of an aortic graft infected with Pseudomonas aeruginosa. Evol Med Public Health. 2018(1):60-66; Petrovic Fabijan A, Lin RCY, Ho J, Maddocks S, Ben Zakour NL, Iredell JR, Westmead Bacteriophage Therapy Team. 2020. Safety of bacteriophage therapy in severe Staphylococcus aureus infection. Nat Microbiol. 5(3):465-472). One potential problem with using these antibacterial agents is the evolution of resistance against them in the long term. Here, we studied the fitness landscape of the Escherichia coli TolC protein, an outer membrane efflux protein that is exploited by a pore forming toxin called colicin E1 and by TLS phage (Pagie L, Hogeweg P. 1999. Colicin diversity: a result of eco-evolutionary dynamics. J Theor Biol. 196(2):251-261; Andersen C, Hughes C, Koronakis V. 2000. Chunnel vision. Export and efflux through bacterial channel-tunnels. EMBO Rep. 1(4):313-318; Koronakis V, Andersen C, Hughes C. 2001. Channel-tunnels. Curr Opin Struct Biol. 11(4):403-407; Czaran TL, Hoekstra RF, Pagie L. 2002. Chemical warfare between microbes promotes biodiversity. Proc Natl Acad Sci U S A. 99(2):786-790; Cascales E, Buchanan SK, Duché D, Kleanthous C, Lloubès R, Postle K, Riley M, Slatin S, Cavard D. 2007. Colicin biology. Microbiol Mol Biol Rev. 71(1):158-229). By systematically assessing the distribution of fitness effects of ∼9,000 single amino acid replacements in TolC using either positive (antibiotics and bile salts) or negative (colicin E1 and TLS phage) selection pressures, we quantified evolvability of the TolC. We demonstrated that the TolC is highly optimized for the efflux of antibiotics and bile salts. In contrast, under colicin E1 and TLS phage selection, TolC sequence is very sensitive to mutations. Finally, we have identified a large set of mutations in TolC that increase resistance of E. coli against colicin E1 or TLS phage without changing antibiotic susceptibility of bacterial cells. Our findings suggest that TolC is a highly evolvable target under negative selection which may limit the potential clinical use of bacteriophages and bacterial toxins if evolutionary aspects are not taken into account.


Assuntos
Bacteriófagos , Colicinas , Proteínas de Escherichia coli , Escherichia coli , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Proteínas da Membrana Bacteriana Externa , Bacteriófagos/genética , Colicinas/química , Colicinas/metabolismo , Colicinas/farmacologia , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo
20.
Nat Commun ; 12(1): 2949, 2021 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-34011959

RESUMO

The antibiotic trimethoprim (TMP) is used to treat a variety of Escherichia coli infections, but its efficacy is limited by the rapid emergence of TMP-resistant bacteria. Previous laboratory evolution experiments have identified resistance-conferring mutations in the gene encoding the TMP target, bacterial dihydrofolate reductase (DHFR), in particular mutation L28R. Here, we show that 4'-desmethyltrimethoprim (4'-DTMP) inhibits both DHFR and its L28R variant, and selects against the emergence of TMP-resistant bacteria that carry the L28R mutation in laboratory experiments. Furthermore, antibiotic-sensitive E. coli populations acquire antibiotic resistance at a substantially slower rate when grown in the presence of 4'-DTMP than in the presence of TMP. We find that 4'-DTMP impedes evolution of resistance by selecting against resistant genotypes with the L28R mutation and diverting genetic trajectories to other resistance-conferring DHFR mutations with catalytic deficiencies. Our results demonstrate how a detailed characterization of resistance-conferring mutations in a target enzyme can help identify potential drugs against antibiotic-resistant bacteria, which may ultimately increase long-term efficacy of antimicrobial therapies by modulating evolutionary trajectories that lead to resistance.


Assuntos
Infecções por Escherichia coli/tratamento farmacológico , Infecções por Escherichia coli/microbiologia , Resistência a Trimetoprima/genética , Trimetoprima/análogos & derivados , Substituição de Aminoácidos , Antibacterianos/química , Antibacterianos/farmacologia , Cristalografia por Raios X , Evolução Molecular Direcionada , Desenho de Fármacos , Escherichia coli/efeitos dos fármacos , Escherichia coli/enzimologia , Escherichia coli/genética , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Antagonistas do Ácido Fólico/química , Antagonistas do Ácido Fólico/farmacologia , Genes Bacterianos , Genótipo , Humanos , Modelos Moleculares , Mutação , Tetra-Hidrofolato Desidrogenase/química , Tetra-Hidrofolato Desidrogenase/genética , Trimetoprima/química , Trimetoprima/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA