Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 108
Filtrar
1.
J Phys Chem Lett ; 15(3): 744-750, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38221741

RESUMO

The difficulty in evaluating the conformational distribution of proteins in solution often hinders mechanistic insights. One possible strategy for visualizing conformational distribution is distance distribution measurement by single-pair small-angle X-ray scattering (SAXS), in which the scattering interference from only a specific pair of atoms in the target molecule is extracted. Despite this promising concept, with few applications in synthetic small molecules and DNA, technical difficulties have prevented its application in protein conformational studies. This study used a synthetic tag to fix the lanthanide ion at desired sites on the protein and used single-pair SAXS with contrast matching to evaluate the conformational distribution of the multidomain protein enzyme MurD. These data highlighted the broad conformational and ligand-driven distribution shifts of MurD in solution. This study proposes an important strategy in solution structural biology that targets dynamic proteins, including multidomain and intrinsically disordered proteins.


Assuntos
Proteínas Intrinsicamente Desordenadas , Espalhamento a Baixo Ângulo , Raios X , Difração de Raios X , Conformação Proteica , Proteínas Intrinsicamente Desordenadas/química
2.
FEBS J ; 291(5): 884-896, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37997624

RESUMO

It is known that oligosaccharyltransferase (OST) has hydrolytic activity toward dolichol-linked oligosaccharides (DLO), which results in the formation of free N-glycans (FNGs), i.e. unconjugated oligosaccharides with structural features similar to N-glycans. The functional importance of this hydrolytic reaction, however, remains unknown. In this study, the hydrolytic activity of OST was characterized in yeast. It was shown that the hydrolytic activity of OST is enhanced in ubiquitin ligase mutants that are involved in endoplasmic reticulum-associated degradation. Interestingly, this enhanced hydrolysis activity is completely suppressed in asparagine-linked glycosylation (alg) mutants, bearing mutations related to the biosynthesis of DLO, indicating that the effect of ubiquitin ligase on OST-mediated hydrolysis is context-dependent. The enhanced hydrolysis activity in ubiquitin ligase mutants was also found to be canceled upon treatment of the cells with dithiothreitol, a reagent that potently induces protein unfolding in the endoplasmic reticulum (ER). Our results clearly suggest that the hydrolytic activity of OST is enhanced under conditions in which the formation of unfolded proteins is promoted in the ER in yeast. The possible role of FNGs on protein folding is discussed.


Assuntos
Degradação Associada com o Retículo Endoplasmático , Hexosiltransferases , Proteínas de Membrana , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Hidrólise , Retículo Endoplasmático , Ubiquitina , Dolicóis , Ligases , Oligossacarídeos , Polissacarídeos
3.
Plant Cell ; 36(4): 1159-1181, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38134410

RESUMO

Plants have unique responses to fluctuating light conditions. One such response involves chloroplast photorelocation movement, which optimizes photosynthesis under weak light by the accumulation of chloroplasts along the periclinal side of the cell, which prevents photodamage under strong light by avoiding chloroplast positioning toward the anticlinal side of the cell. This light-responsive chloroplast movement relies on the reorganization of chloroplast actin (cp-actin) filaments. Previous studies have suggested that CHLOROPLAST UNUSUAL POSITIONING 1 (CHUP1) is essential for chloroplast photorelocation movement as a regulator of cp-actin filaments. In this study, we conducted comprehensive analyses to understand CHUP1 function. Functional, fluorescently tagged CHUP1 colocalized with and was coordinately reorganized with cp-actin filaments on the chloroplast outer envelope during chloroplast movement in Arabidopsis thaliana. CHUP1 distribution was reversibly regulated in a blue light- and phototropin-dependent manner. X-ray crystallography revealed that the CHUP1-C-terminal domain shares structural homology with the formin homology 2 (FH2) domain, despite lacking sequence similarity. Furthermore, the CHUP1-C-terminal domain promoted actin polymerization in the presence of profilin in vitro. Taken together, our findings indicate that CHUP1 is a plant-specific actin polymerization factor that has convergently evolved to assemble cp-actin filaments and enables chloroplast photorelocation movement.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Actinas , Proteínas de Arabidopsis/genética , Polimerização , Proteínas de Cloroplastos/genética , Arabidopsis/genética , Citoesqueleto de Actina , Cloroplastos/fisiologia , Luz , Movimento
4.
Biophys Physicobiol ; 20(4): e200046, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38344030

RESUMO

The consistency principle represents a physicochemical condition requisite for ideal protein folding. It assumes that any pair of amino acid residues in partially folded structures has an attractive short-range interaction only if the two residues are in contact within the native structure. The residue-specific equilibrium constant, K, and the residue-specific rate constant, k (forward and backward), can be determined by NMR and hydrogen-deuterium exchange studies. Linear free energy relationships (LFER) in the rate-equilibrium free energy relationship (REFER) plots (i.e., log k vs. log K) are widely seen in protein-related phenomena, but our REFER plot differs from them in that the data points are derived from one polypeptide chain under a single condition. Here, we examined the theoretical basis of the residue-based LFER. First, we derived a basic equation, ρij=½(φi+φj), from the consistency principle, where ρij is the slope of the line segment that connects residues i and j in the REFER plot, and φi and φj are the local fractions of the native state in the transient state ensemble (TSE). Next, we showed that the general solution is the alignment of the (log K, log k) data points on a parabolic curve in the REFER plot. Importantly, unlike LFER, the quadratic free energy relationship (QFER) is compatible with the heterogeneous formation of local structures in the TSE. Residue-based LFER/QFER provides a unique insight into the TSE: A foldable polypeptide chain consists of several folding units, which are consistently coupled to undergo smooth structural changes.

5.
Sci Rep ; 12(1): 16843, 2022 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-36207470

RESUMO

Multiprobe measurements, such as NMR and hydrogen exchange studies, can provide the equilibrium constant, K, and rate constants for forward and backward processes, k and k', of the two-state structural changes of a polypeptide on a per-residue basis. We previously found a linear relationship between log K and log k and between log K and log k' for the topological exchange of a 27-residue bioactive peptide. To test the general applicability of the residue-based linear free energy relationship (rbLEFR), we performed a literature search to collect residue-specific K, k, and k' values in various exchange processes, including folding-unfolding equilibrium, coupled folding and binding of intrinsically disordered peptides, and structural fluctuations of folded proteins. The good linearity in a substantial number of the log-log plots proved that the rbLFER holds for the structural changes in a wide variety of protein-related phenomena. Among the successful cases, the hydrogen exchange study of apomyoglobin folding intermediates is particularly interesting. We found that the residues that deviated from the linear relationship corresponded to the α-helix, for which transient translocation had been identified by other experiments. Thus, the rbLFER is useful for studying the structures and energetics of the dynamic states of protein molecules.


Assuntos
Peptídeos , Dobramento de Proteína , Hidrogênio , Cinética , Modelos Moleculares , Peptídeos/química , Estrutura Secundária de Proteína , Estudos Retrospectivos , Termodinâmica
6.
Protein Sci ; 31(10): e4433, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36173160

RESUMO

The 20-kDa TOM (translocase of outer mitochondrial membrane) subunit, Tom20, is the first receptor of the protein import pathway into mitochondria. Tom20 recognizes the mitochondrial targeting signal embedded in the presequences attached to mature mitochondrial proteins, as an N-terminal extension. Consequently, ~1,000 different mitochondrial proteins are sorted into the mitochondrial matrix, and distinguished from non-mitochondrial proteins. We previously reported the MPRIDE (multiple partial recognitions in dynamic equilibrium) mechanism to explain the structural basis of the promiscuous recognition of presequences by Tom20. A subset of the targeting signal features is recognized in each pose of the presequence in the binding state, and all of the features are collectively recognized in the dynamic equilibrium between the poses. Here, we changed the volumes of the hydrophobic side chains in the targeting signal, while maintaining the binding affinity. We tethered the mutated presequences to the binding site of Tom20 and placed them in the crystal contact-free space (CCFS) created in the crystal lattice. The spatial distributions of the mutated presequences were visualized as smeared electron densities in the low-pass filtered difference maps obtained by X-ray crystallography. The mutated presequence ensembles shifted their positions in the binding state to accommodate the larger side chains, thus providing positive evidence supporting the use of the MPRIDE mechanism in the promiscuous recognition by Tom20.


Assuntos
Proteínas de Membrana Transportadoras , Receptores de Superfície Celular , Sítios de Ligação , Proteínas de Transporte/metabolismo , Proteínas de Membrana Transportadoras/química , Mitocôndrias/genética , Mitocôndrias/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/genética , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Proteínas Mitocondriais/química , Mutação , Transporte Proteico , Receptores de Superfície Celular/metabolismo
7.
J Biomol NMR ; 76(3): 87-94, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35699866

RESUMO

EXSY (exchange spectroscopy) NMR provides the residue-specific equilibrium constants, K, and residue-specific kinetic rate constants, k, of a polypeptide chain in a two-state exchange in the slow exchange regime. A linear free energy relationship (LFER) discovered in a log k versus log K plot is considered to be a physicochemical basis for smooth folding and conformational changes of protein molecules. For accurate determination of the thermodynamic and kinetic parameters, the measurement bias arising from state-specific differences in the R1 and R2 relaxation rates of 1H and other nuclei in HSQC and EXSY experiments must be minimized. Here, we showed that the time-zero HSQC acquisition scheme (HSQC0) is effective for this purpose, in combination with a special analytical method (Π analysis) for EXSY. As an example, we applied the HSQC0 + Π method to the two-state exchange of nukacin ISK-1 in an aqueous solution. Nukacin ISK-1 is a 27-residue lantibiotic peptide containing three mono-sulfide linkages. The resultant bias-free residue-based LFER provided valuable insights into the transition state of the topological interconversion of nukacin ISK-1. We found that two amino acid residues were exceptions in the residue-based LFER relationship. We inferred that the two residues could adopt special conformations in the transition state, to allow the threading of some side chains through a ring structure formed by one of the mono-sulfide linkages. In this context, the two residues are a useful target for the manipulation of the physicochemical properties and biological activities of nukacin ISK-1.


Assuntos
Aminoácidos , Peptídeos , Ressonância Magnética Nuclear Biomolecular , Termodinâmica
8.
Acta Crystallogr F Struct Biol Commun ; 78(Pt 5): 210-216, 2022 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-35506766

RESUMO

The structure determination of the PX (phox homology) domain of the Saccharomyces cerevisiae Vps17p protein presented a challenging case for molecular replacement because it has noncrystallographic symmetry close to a crystallographic axis. The combination of diffraction-quality crystals grown under microgravity on the International Space Station and a highly accurate template structure predicted by AlphaFold2 provided the key to successful crystal structure determination. Although the structure of the Vps17p PX domain is seen in many PX domains, no basic residues are found around the canonical phosphatidylinositol phosphate (PtdIns-P) binding site, suggesting an inability to bind PtdIns-P molecules.


Assuntos
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Sítios de Ligação , Cristalografia por Raios X , Fosfatos de Fosfatidilinositol/metabolismo , Ligação Proteica , Estrutura Terciária de Proteína , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química
9.
J Phys Chem Lett ; 12(43): 10551-10557, 2021 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-34694122

RESUMO

The characterization of the transition state is a central issue in biophysical studies of protein folding. NMR is a multiprobe measurement technique that provides residue-specific information. Here, we used exchange spectroscopy to characterize the transition state of the two-state slow topological isomerization of a 27-residue lantibiotic peptide. The exchange kinetic rates varied on a per-residue basis, indicating the reduced kinetic cooperativity of the two-state exchange, as well as the previously observed reduced thermodynamic cooperativity. Furthermore, temperature-dependent measurements revealed large variations in the activation enthalpy and entropy terms among residues. Interestingly, we found a linear relationship between the logarithm of the equilibrium constants and that of the exchange rates. Because the data points are derived from amino acid residues in one polypeptide chain, we refer to the linear relationship as the residue-based linear free energy relationship (rbLFER). The rbLFER offers information about the transition state of the two-state exchange.


Assuntos
Ressonância Magnética Nuclear Biomolecular , Peptídeos/química , Termodinâmica , Isomerismo , Cinética
11.
Commun Biol ; 4(1): 941, 2021 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-34354228

RESUMO

Oligosaccharyltransferase (OST) catalyzes oligosaccharide transfer to the Asn residue in the N-glycosylation sequon, Asn-X-Ser/Thr, where Pro is strictly excluded at position X. Considering the unique structural properties of proline, this exclusion may not be surprising, but the structural basis for the rejection of Pro residues should be explained explicitly. Here we determined the crystal structure of an archaeal OST in a complex with a sequon-containing peptide and dolichol-phosphate to a 2.7 Å resolution. The sequon part in the peptide forms two inter-chain hydrogen bonds with a conserved amino acid motif, TIXE. We confirmed the essential role of the TIXE motif and the adjacent regions by extensive alanine-scanning of the external loop 5. A Ramachandran plot revealed that the ring structure of the Pro side chain is incompatible with the ϕ backbone dihedral angle around -150° in the rigid sequon-TIXE structure. The present structure clearly provides the structural basis for the exclusion of Pro residues from the N-glycosylation sequon.


Assuntos
Proteínas Arqueais/química , Archaeoglobus fulgidus/química , Archaeoglobus fulgidus/metabolismo , Hexosiltransferases/química , Proteínas de Membrana/química , Prolina/metabolismo , Glicosilação
12.
Sci Rep ; 11(1): 7718, 2021 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-33833336

RESUMO

DNA replication inhibitors are utilized extensively in studies of molecular biology and as chemotherapy agents in clinical settings. The inhibition of DNA replication often triggers double-stranded DNA breaks (DSBs) at stalled DNA replication sites, resulting in cytotoxicity. In East Asia, some traditional medicines are administered as anticancer drugs, although the mechanisms underlying their pharmacological effects are not entirely understood. In this study, we screened Japanese herbal medicines and identified two benzylisoquinoline alkaloids (BIAs), berberine and coptisine. These alkaloids mildly induced DSBs, and this effect was dependent on the function of topoisomerase I (Topo I) and MUS81-EME1 structure-specific endonuclease. Biochemical analysis revealed that the action of BIAs involves inhibiting the catalytic activity of Topo I rather than inducing the accumulation of the Topo I-DNA complex, which is different from the action of camptothecin (CPT). Furthermore, the results showed that BIAs can act as inhibitors of Topo I, even against CPT-resistant mutants, and that the action of these BIAs was independent of CPT. These results suggest that using a combination of BIAs and CPT might increase their efficiency in eliminating cancer cells.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Berberina/análogos & derivados , Berberina/farmacologia , Camptotecina/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Inibidores da Topoisomerase I/farmacologia , Linhagem Celular Tumoral , Quebras de DNA de Cadeia Dupla/efeitos dos fármacos , Replicação do DNA/efeitos dos fármacos , DNA Topoisomerases Tipo I/genética , Medicina Herbária , Humanos
13.
J Mol Biol ; 432(22): 5951-5965, 2020 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-33010307

RESUMO

Oligosaccharyltransferase (OST) is a membrane-bound enzyme that catalyzes the transfer of oligosaccharide chains from lipid-linked oligosaccharides (LLO) to asparagine residues in polypeptide chains. Using high-speed atomic force microscopy (AFM), we investigated the dynamic properties of OST molecules embedded in biomembranes. An archaeal single-subunit OST protein was immobilized on a mica support via biotin-avidin interactions and reconstituted in a lipid bilayer. The distance between the top of the protein molecule and the upper surface of the lipid bilayer was monitored in real-time. The height of the extramembranous part exhibited a two-step variation with a difference of 1.8 nm. The high and low states are designated as state 1 and state 2, respectively. The transition processes between the two states fit well to single exponential functions, suggesting that the observed dynamic exchange is an intrinsic property of the archaeal OST protein. The two sets of cross peaks in the NMR spectra of the protein supported the conformational changes between the two states in detergent-solubilized conditions. Considering the height values measured in the AFM measurements, state 1 is closer to the crystal structure, and state 2 has a more compact form. Subsequent AFM experiments indicated that the binding of the sugar donor LLO decreased the structural fluctuation and shifted the equilibrium almost completely to state 1. This dynamic behavior is likely necessary for efficient catalytic turnover. Presumably, state 2 facilitates the immediate release of the bulky glycosylated polypeptide product, thus allowing OST to quickly prepare for the next catalytic cycle.


Assuntos
Hexosiltransferases/química , Hexosiltransferases/metabolismo , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Membranas/metabolismo , Microscopia de Força Atômica/métodos , Archaeoglobus fulgidus/metabolismo , Asparagina/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Glicosilação , Bicamadas Lipídicas/metabolismo , Lipopolissacarídeos , Modelos Moleculares , Simulação de Dinâmica Molecular , Oligossacarídeos/metabolismo , Peptídeos/metabolismo , Ligação Proteica , Conformação Proteica
14.
BMC Biol ; 18(1): 152, 2020 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-33115459

RESUMO

BACKGROUND: DNA polymerase D (PolD) is the representative member of the D family of DNA polymerases. It is an archaea-specific DNA polymerase required for replication and unrelated to other known DNA polymerases. PolD consists of a heterodimer of two subunits, DP1 and DP2, which contain catalytic sites for 3'-5' editing exonuclease and DNA polymerase activities, respectively, with both proteins being mutually required for the full activities of each enzyme. However, the processivity of the replicase holoenzyme has additionally been shown to be enhanced by the clamp molecule proliferating cell nuclear antigen (PCNA), making it crucial to elucidate the interaction between PolD and PCNA on a structural level for a full understanding of its functional relevance. We present here the 3D structure of a PolD-PCNA-DNA complex from Thermococcus kodakarensis using single-particle cryo-electron microscopy (EM). RESULTS: Two distinct forms of the PolD-PCNA-DNA complex were identified by 3D classification analysis. Fitting the reported crystal structures of truncated forms of DP1 and DP2 from Pyrococcus abyssi onto our EM map showed the 3D atomic structural model of PolD-PCNA-DNA. In addition to the canonical interaction between PCNA and PolD via PIP (PCNA-interacting protein)-box motif, we found a new contact point consisting of a glutamate residue at position 171 in a ß-hairpin of PCNA, which mediates interactions with DP1 and DP2. The DNA synthesis activity of a mutant PolD with disruption of the E171-mediated PCNA interaction was not stimulated by PCNA in vitro. CONCLUSIONS: Based on our analyses, we propose that glutamate residues at position 171 in each subunit of the PCNA homotrimer ring can function as hooks to lock PolD conformation on PCNA for conversion of its activity. This hook function of the clamp molecule may be conserved in the three domains of life.


Assuntos
Proteínas Arqueais/química , DNA Arqueal/química , DNA Polimerase Dirigida por DNA/química , Conformação de Ácido Nucleico , Thermococcus/genética , Microscopia Crioeletrônica , Pyrococcus abyssi/genética , Thermococcus/enzimologia
15.
J Biol Chem ; 295(47): 16072-16085, 2020 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-32938717

RESUMO

Oligosaccharyltransferase (OST) is responsible for the first step in the N-linked glycosylation, transferring an oligosaccharide chain onto asparagine residues to create glycoproteins. In the absence of an acceptor asparagine, OST hydrolyzes the oligosaccharide donor, releasing free N-glycans (FNGs) into the lumen of the endoplasmic reticulum (ER). Here, we established a purification method for mutated OSTs using a high-affinity epitope tag attached to the catalytic subunit Stt3, from yeast cells co-expressing the WT OST to support growth. The purified OST protein with mutations is useful for wide-ranging biochemical experiments. We assessed the effects of mutations in the Stt3 subunit on the two enzymatic activities in vitro, as well as their effects on the N-glycan attachment and FNG content levels in yeast cells. We found that mutations in the first DXD motif increased the FNG generation activity relative to the oligosaccharyl transfer activity, both in vitro and in vivo, whereas mutations in the DK motif had the opposite effect; the decoupling of the two activities may facilitate future deconvolution of the reaction mechanism. The isolation of the mutated OSTs also enabled us to identify different enzymatic properties in OST complexes containing either the Ost3 or Ost6 subunit and to find a 15-residue peptide as a better-quality substrate than shorter peptides. This toolbox of mutants, substrates, and methods will be useful for investigations of the molecular basis and physiological roles of the OST enzymes in yeast and other organisms.


Assuntos
Retículo Endoplasmático/metabolismo , Hexosiltransferases/metabolismo , Lipopolissacarídeos/metabolismo , Proteínas de Membrana/metabolismo , Mutação Puntual , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Motivos de Aminoácidos , Retículo Endoplasmático/genética , Hexosiltransferases/genética , Hidrólise , Lipopolissacarídeos/genética , Proteínas de Membrana/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
16.
J Phys Chem Lett ; 11(14): 5451-5456, 2020 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-32558579

RESUMO

To obtain unbiased information about the dynamic conformational ensemble of a molecule in solution, one promising approach is small-angle X-ray scattering (SAXS). Conventionally, SAXS data are converted to a pair distribution function, which describes the distance distribution between all pairs of atoms within a molecule. If two strong X-ray scatterers are introduced and the background contributions from the other atoms are suppressed, then the distance distribution between the two scatterers provides spatial information about a flexible molecule. Gold nanocrystals can provide such information for distances of >50 Å. Here, we synthesized a chemical compound containing two iodine atoms attached to the ends of a flexible polyethylene glycol chain and used the relevant singly labeled and unlabeled compounds to suppress the background contribution. This is a feasibility demonstration to prove that the distance distribution in the range of 10-30 Å can be experimentally accessed by SAXS.

18.
J Phys Chem Lett ; 11(5): 1934-1939, 2020 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-32067463

RESUMO

Slow polypeptide conformational changes on time scales of >1 s are generally assumed to be highly cooperative two-state transitions, reflecting the high energy barrier. However, few experimental characterizations have tested the validity of this assumption. We performed residue-specific NMR thermodynamic analysis of the 27-residue lantibiotic peptide, nukacin ISK-1, to characterize the isomerization between two topological states on the second time scale. Unexpectedly, the thermal transition behaviors were distinct among peptide regions, indicating that the topological isomerization process is a mosaic of different degrees of cooperativity. The conformational change path between the two NMR structures was deduced by a targeted molecular dynamics simulation. The unique side-chain threading motions through the monosulfide rings are the structural basis of the high energy barrier, and the nonlocal interactions in the hydrophobic core are the structural basis of the cooperativity. Taken together, we provide an energetic description of the topological isomerization of nukacin ISK-1.


Assuntos
Bacteriocinas/química , Ressonância Magnética Nuclear Biomolecular , Bacteriocinas/metabolismo , Dicroísmo Circular , Isomerismo , Simulação de Dinâmica Molecular , Staphylococcus/metabolismo , Termodinâmica
19.
Biochim Biophys Acta Gen Subj ; 1864(2): 129417, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31445064

RESUMO

BACKGROUND: Tim21, a subunit of a highly dynamic translocase of the inner mitochondrial membrane (TIM23) complex, translocates proteins by interacting with subunits in the translocase of the outer membrane (TOM) complex and Tim23 channel in the TIM23 complex. A loop segment in Tim21, which is in close proximity of the binding site of Tim23, has different conformations in X-ray, NMR and new crystal contact-free space (CCFS) structures. MD simulations can provide information on the structure and dynamics of the loop in solution. METHODS: The conformational ensemble of the loop was characterized using loop modeling and molecular dynamics (MD) simulations. RESULTS: MD simulations confirmed mobility of the loop. Multidimensional scaling and clustering were used to characterize the dynamic conformational ensemble of the loop. Free energy landscape showed that the CCFS crystal structure occupied a low energy region as compared to the conventional X-ray crystal structure. Analysis of crystal packing indicates that the CCFS provides larger conformational space for the motions of the loop. CONCLUSIONS: Our work reported the conformational ensemble of the loop in solution, which is in agreement with the structure obtained from CCFS approach. The combination of the experimental techniques and computational methods is beneficial for studying highly flexible regions of proteins. GENERAL SIGNIFICANCE: Computational methods, such as loop modeling and MD simulations, have proved to be useful for studying conformational flexibility of proteins. These methods in integration with experimental techniques such as CCFS has the potential to transform the studies on flexible regions of proteins.


Assuntos
Proteínas de Transporte da Membrana Mitocondrial/química , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/química , Sítios de Ligação , Proteínas de Transporte/química , Análise por Conglomerados , Espectroscopia de Ressonância Magnética , Mitocôndrias/química , Proteínas do Complexo de Importação de Proteína Precursora Mitocondrial , Simulação de Dinâmica Molecular , Estrutura Secundária de Proteína , Transporte Proteico , Raios X
20.
Biochim Biophys Acta Gen Subj ; 1864(2): 129418, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31449839

RESUMO

BACKGROUND: In protein crystals, flexible loops are frequently deformed by crystal contacts, whereas in solution, the large motions result in the poor convergence of such flexible loops in NMR structure determinations. We need an experimental technique to characterize the structural and dynamic properties of intrinsically flexible loops of protein molecules. METHODS: We designed an intended crystal contact-free space (CCFS) in protein crystals, and arranged the flexible loop of interest in the CCFS. The yeast Tim 21 protein was chosen as the model protein, because one of the loops (loop 2) is distorted by crystal contacts in the conventional crystal. RESULTS: Yeast Tim21 was fused to the MBP protein by a rigid α-helical linker. The space created between the two proteins was used as the CCFS. The linker length provides adjustable freedom to arrange loop 2 in the CCFS. We re-determined the NMR structure of yeast Tim21, and conducted MD simulations for comparison. Multidimensional scaling was used to visualize the conformational similarity of loop 2. We found that the crystal contact-free conformation of loop 2 is located close to the center of the ensembles of the loop 2 conformations in the NMR and MD structures. CONCLUSIONS: Loop 2 of yeast Tim21 in the CCFS adopts a representative, dominant conformation in solution. GENERAL SIGNIFICANCE: No single powerful technique is available for the characterization of flexible structures in protein molecules. NMR analyses and MD simulations provide useful, but incomplete information. CCFS crystallography offers a third route to this goal.


Assuntos
Proteínas de Transporte da Membrana Mitocondrial/química , Proteínas/química , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/química , Sítios de Ligação , Cristalografia por Raios X , Escherichia coli , Espectroscopia de Ressonância Magnética , Proteínas do Complexo de Importação de Proteína Precursora Mitocondrial , Simulação de Dinâmica Molecular , Movimento (Física) , Estrutura Secundária de Proteína , Eletricidade Estática
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA