Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(14)2023 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-37511013

RESUMO

In attention deficit hyperactivity disorder (ADHD), hyperactivity and impulsivity occur in response to delayed reward. Herein we report a novel animal model in which male Sprague-Dawley rats exposed to repeated hypoxic brain injury during the equivalent of extreme prematurity were ADHD-like hyperactive/impulsive in response to delayed reward and attentive at 3 months of age. Thus, a unique animal model of one of the presentations/subtypes of ADHD was discovered. An additional finding is that the repeated hypoxia rats were not hyperactive in the widely used open field test, which is not ADHD specific. Hence, it is recommended that ADHD-like hyperactivity and ADHD-like impulsivity, specifically in response to delayed reward, be a primary component in the design of future experiments that characterize potential animal models of ADHD, replacing open field testing of hyperactivity. Unknown is whether death and/or activity of midbrain dopaminergic neurons contributed to the ADHD-like hyperactivity/impulsivity detected after delayed reward. Hence, we stereologically measured the absolute number of dopaminergic neurons in four midbrain subregions and the average somal/nuclear volume of those neurons. Repeated hypoxia rats had a significant specific loss of dopaminergic neurons in the right ventral tegmental area (VTA) at 2 weeks of age and 18 months of age, providing new evidence of a site of pathology. No dopaminergic neuronal loss occurred in three other midbrain regions. Fewer VTA dopaminergic neurons correlated with increased ADHD-like hyperactivity and impulsivity. Novel early intervention therapies to rescue VTA dopaminergic neurons and potentially prevent ADHD-like hyperactivity/impulsivity can now be investigated.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade , Neurônios Dopaminérgicos , Ratos , Animais , Masculino , Neurônios Dopaminérgicos/fisiologia , Ratos Sprague-Dawley , Área Tegmentar Ventral , Recompensa , Comportamento Impulsivo , Hipóxia
2.
Sci Rep ; 9(1): 10473, 2019 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-31324817

RESUMO

Brain tumours are the most common cause of cancer death in children. Molecular studies have greatly improved our understanding of these tumours but tumour metabolism is underexplored. Metabolites measured in vivo have been reported as prognostic biomarkers of these tumours but analysis of surgically resected tumour tissue allows a more extensive set of metabolites to be measured aiding biomarker discovery and providing validation of in vivo findings. In this study, metabolites were quantified across a range of paediatric brain tumours using 1H-High-Resolution Magic Angle Spinning nuclear magnetic resonance spectroscopy (HR-MAS) and their prognostic potential investigated. HR-MAS was performed on pre-treatment frozen tumour tissue from a single centre. Univariate and multivariate Cox regression was used to examine the ability of metabolites to predict survival. The models were cross validated using C-indices and further validated by splitting the cohort into two. Higher concentrations of glutamine were predictive of a longer overall survival, whilst higher concentrations of lipids were predictive of a shorter overall survival. These metabolites were predictive independent of diagnosis, as demonstrated in multivariate Cox regression models. Whilst accurate quantification of metabolites such as glutamine in vivo is challenging, metabolites show promise as prognostic markers due to development of optimised detection methods and increasing use of 3 T clinical scanners.


Assuntos
Neoplasias Encefálicas/diagnóstico , Adolescente , Biomarcadores Tumorais/análise , Neoplasias Encefálicas/química , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/mortalidade , Criança , Pré-Escolar , Feminino , Humanos , Espectroscopia de Ressonância Magnética , Masculino , Metabolômica , Prognóstico , Modelos de Riscos Proporcionais , Análise de Sobrevida
3.
Sci Rep ; 8(1): 11992, 2018 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-30097636

RESUMO

Paediatric brain tumors are becoming well characterized due to large genomic and epigenomic studies. Metabolomics is a powerful analytical approach aiding in the characterization of tumors. This study shows that common cerebellar tumors have metabolite profiles sufficiently different to build accurate, robust diagnostic classifiers, and that the metabolite profiles can be used to assess differences in metabolism between the tumors. Tissue metabolite profiles were obtained from cerebellar ependymoma (n = 18), medulloblastoma (n = 36), pilocytic astrocytoma (n = 24) and atypical teratoid/rhabdoid tumors (n = 5) samples using HR-MAS. Quantified metabolites accurately discriminated the tumors; classification accuracies were 94% for ependymoma and medulloblastoma and 92% for pilocytic astrocytoma. Using current intraoperative examination the diagnostic accuracy was 72% for ependymoma, 90% for medulloblastoma and 89% for pilocytic astrocytoma. Elevated myo-inositol was characteristic of ependymoma whilst high taurine, phosphocholine and glycine distinguished medulloblastoma. Glutamine, hypotaurine and N-acetylaspartate (NAA) were increased in pilocytic astrocytoma. High lipids, phosphocholine and glutathione were important for separating ATRTs from medulloblastomas. This study demonstrates the ability of metabolic profiling by HR-MAS on small biopsy tissue samples to characterize these tumors. Analysis of tissue metabolite profiles has advantages in terms of minimal tissue pre-processing, short data acquisition time giving the potential to be used as part of a rapid diagnostic work-up.


Assuntos
Neoplasias Cerebelares/metabolismo , Metaboloma , Metabolômica , Fatores Etários , Neoplasias Cerebelares/diagnóstico , Criança , Biologia Computacional/métodos , Humanos , Redes e Vias Metabólicas , Metabolômica/métodos , Reprodutibilidade dos Testes , Análise Espectral
4.
Oncotarget ; 9(13): 11336-11351, 2018 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-29541417

RESUMO

The rare pediatric embryonal tumors retinoblastoma, medulloblastoma and neuroblastoma derive from neuroectodermal tissue and share similar histopathological features despite different anatomical locations and diverse clinical outcomes. As metabolism can reflect genetic and histological features, we investigated whether the metabolism of embryonal tumors reflects their similar histology, shared developmental and neural origins, or tumor location. We undertook metabolic profiling on 50 retinoblastoma, 39 medulloblastoma and 70 neuroblastoma using high resolution magic angle spinning magnetic resonance spectroscopy (1H-MRS). Mean metabolite concentrations identified several metabolites that were significantly different between the tumor groups including taurine, hypotaurine, glutamate, glutamine, GABA, phosphocholine, N-acetylaspartate, creatine, glycine and myoinositol, p < 0.0017. Unsupervised multivariate analysis found that each tumor group clustered separately, with a unique metabolic profile, influenced by their underlying clinical diversity. Taurine was notably high in all tumors consistent with prior evidence from embryonal tumors. Retinoblastoma and medulloblastoma were more metabolically similar, sharing features associated with the central nervous system (CNS). Neuroblastoma had features consistent with neural tissue, but also contained significantly higher myoinositol and altered glutamate-glutamine ratio, suggestive of differences in the underlying metabolism of embryonal tumors located outside of the CNS. Despite the histological similarities and shared neural metabolic features, we show that individual neuroectodermal derived embryonal tumors can be distinguished by tissue metabolic profile. Pathway analysis suggests the alanine-aspartate-glutamate and taurine-hypotaurine metabolic pathways may be the most pertinent pathways to investigate for novel therapeutic strategies. This work strengthens our understanding of the biology and metabolic pathways underlying neuroectodermal derived embryonal tumors of childhood.

5.
Pathobiology ; 85(3): 157-168, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29428932

RESUMO

AIMS: Metabolite levels can be measured non-invasively using in vivo 1H magnetic resonance spectroscopy (MRS). These tumour metabolite profiles are highly characteristic for tumour type in childhood brain tumours; however, the relationship between metabolite values and conventional histopathological characteristics has not yet been fully established. This study systematically tests the relationship between metabolite levels detected by MRS and specific histological features in a range of paediatric brain tumours. METHODS: Single-voxel MRS was performed routinely in children with brain tumours along with the clinical imaging prior to treatment. Metabolites were quantified using LCModel. Histological features were assessed semi-quantitatively for 27 children on H&E and immunostained slides, blind to the metabolite values. Statistical analysis included 2-tailed independent-samples t tests and 2-tailed Spearman rank correlation tests. RESULTS: Ki67, cellular atypia, and mitosis correlated positively with choline metabolites, and phosphocholine in particular. Apoptosis and necrosis were both associated with lipid levels, with the relationship dependent on the use of long or short echo time MRS acquisitions. Neuronal components correlated negatively and glial components positively with N-acetyl-aspartate. Glial components correlated positively with myoinositol. CONCLUSION: Metabolite levels in children's brain tumours measured by MRS are closely associated with key histological features routinely assessed by histopathologists in the diagnostic process. This further elucidates our understanding of this important non-invasive diagnostic tool and strengthens our understanding of the relationship between metabolites and histological features.


Assuntos
Biomarcadores Tumorais/análise , Neoplasias Encefálicas/metabolismo , Apoptose , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Encéfalo/patologia , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/patologia , Criança , Humanos , Antígeno Ki-67/análise , Espectroscopia de Ressonância Magnética , Necrose , Coloração e Rotulagem
6.
Mol Cell Neurosci ; 68: 56-72, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25828540

RESUMO

Perinatal hypoxia-ischemia is a major cause of striatal injury and may lead to cerebral palsy. This study investigated whether delayed administration of bone marrow-derived mesenchymal stem cells (MSCs), at one week after neonatal rat hypoxia-ischemia, was neurorestorative of striatal medium-spiny projection neurons and improved motor function. The effect of a subcutaneous injection of a high-dose, or a low-dose, of MSCs was investigated in stereological studies. Postnatal day (PN) 7 pups were subjected to hypoxia-ischemia. At PN14, pups received treatment with either MSCs or diluent. A subset of high-dose pups, and their diluent control pups, were also injected intraperitoneally with bromodeoxyuridine (BrdU), every 24h, on PN15, PN16 and PN17. This permitted tracking of the migration and survival of neuroblasts originating from the subventricular zone into the adjacent injured striatum. Pups were euthanized on PN21 and the absolute number of striatal medium-spiny projection neurons was measured after immunostaining for DARPP-32 (dopamine- and cAMP-regulated phosphoprotein-32), double immunostaining for BrdU and DARPP-32, and after cresyl violet staining alone. The absolute number of striatal immunostained calretinin interneurons was also measured. There was a statistically significant increase in the absolute number of DARPP-32-positive, BrdU/DARPP-32-positive, and cresyl violet-stained striatal medium-spiny projection neurons, and fewer striatal calretinin interneurons, in the high-dose mesenchymal stem cell (MSC) group compared to their diluent counterparts. A high-dose of MSCs restored the absolute number of these neurons to normal uninjured levels, when compared with previous stereological data on the absolute number of cresyl violet-stained striatal medium-spiny projection neurons in the normal uninjured brain. For the low-dose experiment, in which cresyl violet-stained striatal medium-spiny neurons alone were measured, there was a lower statistically significant increase in their absolute number in the MSC group compared to their diluent controls. Investigation of behavior in another cohort of animals showed that delayed administration of a high-dose of bone marrow-derived MSCs, at one week after neonatal rat hypoxia-ischemia, improved motor function on the cylinder test. Thus, delayed therapy with a high- or low-dose of adult MSCs, at one week after injury, is effective in restoring the loss of striatal medium-spiny projection neurons after neonatal rat hypoxia-ischemia and a high-dose of MSCs improved motor function.


Assuntos
Terapia Baseada em Transplante de Células e Tecidos/métodos , Corpo Estriado/patologia , Hipóxia-Isquemia Encefálica , Células-Tronco Mesenquimais/fisiologia , Transtornos das Habilidades Motoras/terapia , Neurônios/fisiologia , Fatores Etários , Animais , Animais Recém-Nascidos , Antígenos CD/metabolismo , Peso Corporal , Calbindina 2/metabolismo , Modelos Animais de Doenças , Fosfoproteína 32 Regulada por cAMP e Dopamina/metabolismo , Hipóxia-Isquemia Encefálica/complicações , Hipóxia-Isquemia Encefálica/patologia , Hipóxia-Isquemia Encefálica/terapia , Ventrículos Laterais/citologia , Masculino , Transtornos das Habilidades Motoras/etiologia , Neurogênese , Ratos , Ratos Sprague-Dawley , Fatores de Tempo
7.
J Neurosci ; 33(29): 11863-77, 2013 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-23864676

RESUMO

Brain injury in the premature infant is associated with a high risk of neurodevelopmental disability. Previous small-animal models of brain injury attributable to extreme prematurity typically fail to generate a spectrum of pathology and behavior that closely resembles that observed in humans, although they provide initial answers to numerous cellular, molecular, and therapeutic questions. We tested the hypothesis that exposure of rats to repeated hypoxia from postnatal day 1 (P1) to P3 models the characteristic white matter neuropathological injury, gray matter volume loss, and memory deficits seen in children born extremely prematurely. Male Sprague Dawley rats were exposed to repeated hypoxia or repeated normoxia from P1 to P3. The absolute number of pre-oligodendrocytes and mature oligodendrocytes, the surface area and g-ratio of myelin, the absolute volume of cerebral white and gray matter, and the absolute number of cerebral neurons were quantified stereologically. Spatial memory was investigated on a radial arm maze. Rats exposed to repeated hypoxia had a significant loss of (1) pre-oligodendrocytes at P4, (2) cerebral white matter volume and myelin at P14, (3) cerebral cortical and striatal gray matter volume without neuronal loss at P14, and (4) cerebral myelin and memory deficits in adulthood. Decreased myelin was correlated with increased attention deficit hyperactivity disorder-like hyperactivity. This new small-animal model of extreme prematurity generates a spectrum of short- and long-term pathology and behavior that closely resembles that observed in humans. This new rat model provides a clinically relevant tool to investigate numerous cellular, molecular, and therapeutic questions on brain injury attributable to extreme prematurity.


Assuntos
Comportamento Animal/fisiologia , Encéfalo/patologia , Hipóxia/patologia , Aprendizagem em Labirinto/fisiologia , Neurônios/patologia , Animais , Animais Recém-Nascidos , Astrócitos/metabolismo , Astrócitos/patologia , Encéfalo/metabolismo , Encéfalo/fisiopatologia , Hipóxia/metabolismo , Hipóxia/fisiopatologia , Masculino , Bainha de Mielina/metabolismo , Bainha de Mielina/patologia , Fibras Nervosas Mielinizadas/patologia , Neurônios/metabolismo , Oligodendroglia/patologia , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA