RESUMO
Convergent evolution is a widespread phenomenon. While there are many examples of convergent evolution at the phenotypic scale, convergence at the molecular level has been more difficult to identify. A classic example of convergent evolution across scales is that of the digestive lysozyme found in ruminants and Colobine monkeys. These herbivorous species rely on foregut fermentation, which has evolved to function more optimally under acidic conditions. Here, we explored if rodents with similar dietary strategies and digestive morphologies have convergently evolved a lysozyme with digestive functions. At the phenotypic level, we find that rodents with bilocular stomach morphologies exhibited a lysozyme that maintained higher relative activities at low pH values, similar to the lysozymes of ruminants and Colobine monkeys. Additionally, the lysozyme of Peromyscus leucopus shared a similar predicted protonation state as that observed in previously identified digestive lysozymes. However, we found limited evidence of positive selection acting on the lysozyme gene in foregut-fermenting species and did not identify patterns of convergent molecular evolution in this gene. This study emphasizes that phenotypic convergence need not be the result of convergent genetic modifications, and we encourage further exploration into the mechanisms regulating convergence across biological scales.
Assuntos
Muramidase , Roedores , Animais , Muramidase/genética , Muramidase/química , Estômago , Primatas , Ruminantes/genética , Evolução Molecular , Filogenia , Evolução BiológicaRESUMO
The role of species interactions, as well as genetic and environmental factors, all likely contribute to the composition and structure of the gut microbiome; however, disentangling these independent factors under field conditions represents a challenge for a functional understanding of gut microbial ecology. Avian brood parasites provide unique opportunities to investigate these questions, as brood parasitism results in parasite and host nestlings being raised in the same nest, by the same parents. Here we utilized obligate brood parasite brown-headed cowbird nestlings (BHCO; Molothrus ater) raised by several different host passerine species to better understand, via 16S rRNA sequencing, the microbial ecology of brood parasitism. First, we compared faecal microbial communities of prothonotary warbler nestlings (PROW; Protonotaria citrea) that were either parasitized or non-parasitized by BHCO and communities among BHCO nestlings from PROW nests. We found that parasitism by BHCO significantly altered both the community membership and community structure of the PROW nestling microbiota, perhaps due to the stressful nest environment generated by brood parasitism. In a second dataset, we compared faecal microbiotas from BHCO nestlings raised by six different host passerine species. Here, we found that the microbiota of BHCO nestlings was significantly influenced by the parental host species and the presence of an inter-specific nestmate. Thus, early rearing environment is important in determining the microbiota of brood parasite nestlings and their companion nestlings. Future work may aim to understand the functional effects of this microbiota variability on nestling performance and fitness.
Assuntos
Parasitos , Passeriformes , Animais , RNA Ribossômico 16S/genética , Comportamento de NidaçãoRESUMO
Research has shown that leached plant toxins negatively impact the growth and development of larval amphibians. However, tadpoles may encounter these same toxins in food material, and differential exposure routes and distribution of toxic chemicals can yield variable downstream effects on animals. To date, most research understanding the interactions between dietary plant toxins and herbivores has been conducted in terrestrial systems. Despite the abundance of plant toxins in food and water sources, the effects of dietary plant toxins on larval amphibians have not been studied, and tannins could negatively affect these species. Here, green frog tadpoles (Lithobates clamitans) were fed diets with or without 2% tannic acid to test how their growth, development, behavior, and gut microbiome respond to dietary tannins. At the end of the trial, we conducted a behavioral assay to measure tadpole activity and boldness and inventoried the gut microbiome using 16S rRNA sequencing. Dietary tannins significantly decreased body mass by 66% and length by 28%, without influencing tadpole developmental stage. We found significant differences in exploratory behavior and boldness during the first minute of our behavioral assay, demonstrating that tannins have the potential to influence behavior during novel or stressful events. Finally, tannins significantly sculpted the gut microbiome, with an increase in the measurement of Shannon entropy. We observed 7 microbial phyla and 153 microbial genera that exhibited significantly differential abundances differences between control and tannic acid-fed tadpoles. Collectively, our results demonstrate that dietary tannins have the potential to alter amphibian growth, behavior, and microbiome.
RESUMO
Climate change and increasing global temperatures are a leading threat to ectothermic animals worldwide. Ectotherm persistence under climate change will depend on a combination of host and environmental factors; recently it has become clear that host-associated microbial communities contribute significantly to the response of ectotherms to environmental warming. However, several unanswered questions about these relationships remain before accurate predictions can be made regarding the microbiome's influence on host ecology and evolution under climate warming. In this Commentary, we provide a brief background of what is currently known about the influence of the microbiome on heat tolerance in both invertebrate and vertebrate ectothermic animals, and the mechanisms behind these effects. We then outline what we feel are important priorities for future work in the field, and how these goals could be accomplished. We specifically highlight a need for more diversity in study systems, especially through increasing representation of vertebrate hosts and hosts across a variety of life-history traits and habitats, as well as a greater understanding of how these relationships manifest in field settings. Lastly, we discuss the implications of microbiome-mediated heat tolerance for animal conservation under climate change and the possibility of 'bioaugmentation' approaches to bolster host heat tolerance in vulnerable populations.
Assuntos
Microbiota , Termotolerância , Animais , Mudança Climática , Ecologia , EmoçõesRESUMO
Equity and inclusivity in STEM research has become a larger topic of discussion in recent years; however, researchers and scientists with disabilities and/or chronic illnesses are often missing from these conversations. Further, while field research is a major research component for some STEM disciplines, it is unclear what accessibility barriers or accommodations exist across the field sciences. Field research can sometimes involve harsh environments, topography, and weather that present challenges to those with disabilities and/or chronic illnesses. A large and coinciding obstacle standing in the way of field research accessibility is the ableism present across science and academia, resulting in and from a lack of prioritization of attention and funding from universities and institutions. Biological field stations have been shown to be valuable not only as infrastructure for field-based research, but also as providing resources toward the scientific education of students and scientific outreach initiatives for the general public. As such, biological field stations are perfectly positioned to reduce barriers in research inclusion and accessibility for students and scientists with disabilities and/or chronic illnesses. The current work presents the results of a survey meant to inventory the presence or absence of accessible infrastructure across field stations, with responses spanning six countries and 24 US states. Our results highlight a number of accessibility deficits in areas such as accessible entrances, kitchens, and bathrooms. Our results suggest that (1) biological field stations have significant variability in accessibility with significant deficits, especially in non-public-facing buildings used primarily by staff and researchers, and (2) field stations would benefit from an increase in federal funding opportunities to expedite their progress toward compliance with Americans with Disabilities Act (ADA) standards. We propose potential solutions to field work infrastructure spanning a range of financial costs, with emphasis on the point that efforts toward accessibility do not require an "all-or-nothing" approach, and that any step toward accessibility will make field stations more inclusive. Additionally, we further suggest that federal funding sources, such as the NSF and NIH, as well as university leadership, should consider broadening diversity initiatives to promote the continuation of, and increased accessibility of, university-affiliated field stations.
Assuntos
Pessoas com Deficiência , Animais , Estados Unidos , Humanos , Estudantes , Universidades , Pesquisadores , Doença CrônicaRESUMO
Understanding how the global climate impacts the physiology of wildlife animals is of importance. Amphibians are particularly sensitive to climate change, and it is hypothesized that rising temperatures impair their neurodevelopment. Temperature influences the composition of the gut microbiota, which is critical to host neurodevelopment through the microbiota-gut-brain (MGB) axis. Most research investigating the link between the gut microbiota and neurodevelopment occurs in germ-free mammalian model systems, leaving the nature of the MGB axis in non-mammalian wildlife unclear. Here, we tested the hypothesis that the temperature and the microbial environment in which tadpoles were raised shapes neurodevelopment, possibly through the MGB axis. Newly hatched green frog tadpoles (Lithobates clamitans) were raised in natural pond water or autoclaved pond water, serving as an experimental manipulation of the microbiota by reducing colonizing microbes, at three different water temperatures: 14, 22 and 28°C. Neurodevelopment was analyzed through measures of relative brain mass and morphology of brain structures of interest. We found that tadpole development in warmer temperatures increased relative brain mass and optic tectum width and length. Further, tadpole development in autoclaved pond water increased relative optic tectum width and length. Additionally, the interaction of treatments altered relative diencephalon length. Lastly, we found that variation in brain morphology was associated with gut microbial diversity and the relative abundance of individual bacterial taxa. Our results indicate that both environmental temperature and microbial communities influence relative brain mass and shape. Furthermore, we provide some of the first evidence for the MGB axis in amphibians.
Assuntos
Microbioma Gastrointestinal , Animais , Temperatura , Microbioma Gastrointestinal/fisiologia , Larva , Mudança Climática , Animais Selvagens , Anfíbios , MamíferosRESUMO
Phenotypic plasticity is an important strategy that animals employ to respond and adjust to changes in their environment. Plasticity may occur via changes in host gene expression or through functional changes in their microbiomes, which contribute substantially to host physiology. Specifically, the presence and function of host-associated microbes can impact how animals respond to heat stress. We previously demonstrated that 'depleted' tadpoles, with artificially disrupted microbiomes, are less tolerant to heat than 'colonized' tadpoles, with more natural microbiomes. However, the mechanisms behind these effects are unclear. Here, we compared gene expression profiles of the tadpole gut transcriptome, and tadpole gut microbial metagenome, between colonized and depleted tadpoles under cool or warm conditions. Our goal was to identify differences in host and microbial responses to heat between colonized and depleted tadpoles that might explain their observed differences in heat tolerance. We found that depleted tadpoles exhibited a much stronger degree of host gene expression plasticity in response to heat, while the microbiome of colonized tadpoles was significantly more heat sensitive. These patterns indicate that functional changes in the microbiome in response to heat may allow for a dampened host response, ultimately buffering hosts from the deleterious effects of heat stress. We also identified several specific host and microbial pathways that could be contributing to increased thermal tolerance in colonized tadpoles including amino acid metabolism, vitamin biosynthesis and ROS scavenging pathways. Our results demonstrate that the microbiome influences host plasticity and the response of hosts to environmental stressors.
Assuntos
Microbiota , Termotolerância , Animais , Larva , Interações entre Hospedeiro e MicrorganismosRESUMO
While the link between the gut microbiome and host behaviour is well established, how the microbiomes of other organs correlate with behaviour remains unclear. Additionally, behaviour-microbiome correlations are likely sex-specific because of sex differences in behaviour and physiology, but this is rarely tested. Here, we tested whether the skin microbiome of the Trinidadian guppy, Poecilia reticulata, predicts fish activity level and shoaling tendency in a sex-specific manner. High-throughput sequencing revealed that the bacterial community richness on the skin (Faith's phylogenetic diversity) was correlated with both behaviours differently between males and females. Females with richer skin-associated bacterial communities spent less time actively swimming. Activity level was significantly correlated with community membership (unweighted UniFrac), with the relative abundances of 16 bacterial taxa significantly negatively correlated with activity level. We found no association between skin microbiome and behaviours among male fish. This sex-specific relationship between the skin microbiome and host behaviour may indicate sex-specific physiological interactions with the skin microbiome. More broadly, sex specificity in host-microbiome interactions could give insight into the forces shaping the microbiome and its role in the evolutionary ecology of the host.
Assuntos
Microbioma Gastrointestinal , Poecilia , Animais , Bactérias/genética , Evolução Biológica , Feminino , Masculino , Filogenia , Poecilia/fisiologiaRESUMO
Digestive morphology and physiology differ across animal species, with many comparative studies uncovering relationships between animal ecology or diet, and the morphology and physiology of the gastrointestinal tract. However, many of these studies compare wild-caught animals feeding on uncontrolled diets and compare broadly related taxa. Thus, few studies have disentangled the phenotypic consequences of genetics from those potentially caused by the environment, especially across closely related species that occupy similar ecological niches. Here, we examined differences in digestive morphology and physiology of five closely related species of Peromyscus mice that were captive bred under identical environmental conditions and identical diets for multiple generations. Using phylogenetic generalized least squares (PGLS) of species means to control for body size, we identified a phylogenetic signal in the mass of the foregut and length of the small intestine across species. As proportions of total gut mass, we identified phylogenetic signals in relative foregut and small intestine masses, indicating that the sizes of these structures are more similar among closely related species. Finally, we detected differences in activities of the protease aminopeptidase-N enzyme across species. Overall, we demonstrate fine-scale differences in digestive morphology and physiology among closely related species. Our results suggest that Peromyscus could provide a system for future studies to explore the interplay between natural history, morphology, and physiology (e.g. ecomorphology and ecophysiology), and to investigate the genetic architecture that underlies gut anatomy.
Assuntos
Dieta , Peromyscus , Animais , Ambiente Controlado , Trato Gastrointestinal/fisiologia , FilogeniaRESUMO
The gut microbial communities of mammals provide numerous benefits to their hosts. However, given the recent development of the microbiome field, we still lack a thorough understanding of the variety of ecological and evolutionary factors that structure these communities across species. Metabarcoding is a powerful technique that allows for multiple microbial ecology questions to be investigated simultaneously. Here, we employed DNA metabarcoding techniques, predictive metagenomics, and culture-dependent techniques to inventory the gut microbial communities of several species of rodent collected from the same environment that employ different natural feeding strategies [granivorous pocket mice (Chaetodipus penicillatus); granivorous kangaroo rats (Dipodomys merriami); herbivorous woodrats (Neotoma albigula); omnivorous cactus mice (Peromyscus eremicus); and insectivorous grasshopper mice (Onychomys torridus)]. Of particular interest were shifts in gut microbial communities in rodent species with herbivorous and insectivorous diets, given the high amounts of indigestible fibers and chitinous exoskeleton in these diets, respectively. We found that herbivorous woodrats harbored the greatest microbial diversity. Granivorous pocket mice and kangaroo rats had the highest abundances of the genus Ruminococcus and highest predicted abundances of genes related to the digestion of fiber, representing potential adaptations in these species to the fiber content of seeds and the limitations to digestion given their small body size. Insectivorous grasshopper mice exhibited the greatest inter-individual variation in the membership of their microbiomes, and also exhibited the highest predicted abundances of chitin-degrading genes. Culture-based approaches identified 178 microbial isolates (primarily Bacillus and Enterococcus), with some capable of degrading cellulose and chitin. We observed several instances of strain-level diversity in these metabolic capabilities across isolates, somewhat highlighting the limitations and hidden diversity underlying DNA metabarcoding techniques. However, these methods offer power in allowing the investigation of several questions concurrently, thus enhancing our understanding of gut microbial ecology.
Assuntos
Microbioma Gastrointestinal , Microbiota , Animais , Quitina , Dipodomys , Herbivoria , Peromyscus , RoedoresRESUMO
Diet selection is a fundamental aspect of animal behavior with numerous ecological and evolutionary implications. While the underlying mechanisms are complex, the availability of essential dietary nutrients can strongly influence diet selection behavior. The gut microbiome has been shown to metabolize many of these same nutrients, leading to the untested hypothesis that intestinal microbiota may influence diet selection. Here, we show that germ-free mice colonized by gut microbiota from three rodent species with distinct foraging strategies differentially selected diets that varied in macronutrient composition. Specifically, we found that herbivore-conventionalized mice voluntarily selected a higher protein:carbohydrate (P:C) ratio diet, while omnivore- and carnivore-conventionalized mice selected a lower P:C ratio diet. In support of the long-standing hypothesis that tryptophanthe essential amino acid precursor of serotoninserves as a peripheral signal regulating diet selection, bacterial genes involved in tryptophan metabolism and plasma tryptophan availability prior to the selection trial were significantly correlated with subsequent voluntary carbohydrate intake. Finally, herbivore-conventionalized mice exhibited larger intestinal compartments associated with microbial fermentation, broadly reflecting the intestinal morphology of their donor species. Together, these results demonstrate that gut microbiome can influence host diet selection behavior, perhaps by mediating the availability of essential amino acids, thereby revealing a mechanism by which the gut microbiota can influence host foraging behavior.
Assuntos
Microbioma Gastrointestinal , Microbiota , Animais , Bactérias , Dieta , Microbioma Gastrointestinal/fisiologia , Intestinos , CamundongosRESUMO
Identifying factors that influence how ectothermic animals respond physiologically to changing temperatures is of high importance given current threats of global climate change. Host-associated microbial communities impact animal physiology and have been shown to influence host thermal tolerance in invertebrate systems. However, the role of commensal microbiota in the thermal tolerance of ectothermic vertebrates is unknown. Here we show that experimentally manipulating the tadpole microbiome through environmental water sterilization reduces the host's acute thermal tolerance to both heat and cold, alters the thermal sensitivity of locomotor performance, and reduces animal survival under prolonged heat stress. We show that these tadpoles have reduced activities of mitochondrial enzymes and altered metabolic rates compared with tadpoles colonized with unmanipulated microbiota, which could underlie differences in thermal phenotypes. These results demonstrate a strong link between the microbiota of an ectothermic vertebrate and the host's thermal tolerance, performance and fitness. It may therefore be important to consider host-associated microbial communities when predicting species' responses to climate change.
Assuntos
Microbiota , Animais , Mudança Climática , Temperatura Baixa , Resposta ao Choque Térmico , Larva , VertebradosRESUMO
Fecal transplants are a powerful tool for manipulating the gut microbial community, but how these non-native communities establish in the presence of an intact host gut microbiome is poorly understood. We explored the microbiome of desert woodrats (Neotoma lepida) to determine whether disrupting existing microbial communities using plant secondary compounds (PSCs) or antibiotics increases the establishment of foreign microbes. We administered two fecal transplants between natural populations of adult woodrats that harbor distinct gut microbiota and have different natural dietary exposure to PSCs. First, we administered fecal transplants to recipients given creosote resin, a toxin found in the natural diet of our "donor" population, and compared the gut microbial communities to animals given fecal transplants and control diet using 16S rRNA gene sequencing. Second, we disrupted the gut microbial community of the same recipients with an antibiotic prior to fecal transplants. We found that gut microbial communities of woodrats disrupted with PSCs or antibiotics resembled that of donors more closely than control groups. PSC treatment also enriched microbes associated with metabolizing dietary toxins in transplant recipients. These results demonstrate that microbial community disturbances by PSCs or antibiotics are sufficient to facilitate establishment of foreign microbes in animals with intact microbiomes.
Assuntos
Microbioma Gastrointestinal , Microbiota , Animais , Antibacterianos/farmacologia , Transplante de Microbiota Fecal , Microbioma Gastrointestinal/genética , RNA Ribossômico 16S/genéticaRESUMO
The symbiont-associated (SA) environmental package is a new extension to the minimum information about any (x) sequence (MIxS) standards, established by the Parasite Microbiome Project (PMP) consortium, in collaboration with the Genomics Standard Consortium. The SA was built upon the host-associated MIxS standard, but reflects the nestedness of symbiont-associated microbiota within and across host-symbiont-microbe interactions. This package is designed to facilitate the collection and reporting of a broad range of metadata information that apply to symbionts such as life history traits, association with one or multiple host organisms, or the nature of host-symbiont interactions along the mutualism-parasitism continuum. To better reflect the inherent nestedness of all biological systems, we present a novel feature that allows users to co-localize samples, to nest a package within another package, and to identify replicates. Adoption of the MIxS-SA and of the new terms will facilitate reports of complex sampling design from a myriad of environments.
RESUMO
The vertebrate gut microbiota (bacterial, archaeal and fungal communities of the gastrointestinal tract) can have profound effects on the physiological processes of their hosts. Although relatively stable, changes in microbiome structure and composition occur due to changes in the environment, including exposure to stressors and associated increases in glucocorticoid hormones. Although a growing number of studies have linked stressor exposure to microbiome changes, few studies have experimentally explored the specific influence of glucocorticoids on the microbiome in wild animals, or across ecologically important processes (e.g., reproductive stages). Here we tested the response of the gut microbiota of adult female Sceloporus undulatus across gestation to ecologically relevant elevations of a stress-relevant glucocorticoid hormone (CORT) in order to determine (i) how experimentally elevated CORT influenced microbiome characteristics, and (ii) whether this relationship was dependent on reproductive context (i.e., whether females were gravid or not, and, in those that were gravid, gestational stage). We show that the effects of CORT on gut microbiota are complex and depend on both gestational state and stage. CORT treatment altered microbial community membership and resulted in an increase in microbiome diversity in late-gestation females, and microbial community membership varied according to treatment. In nongravid females, CORT treatment decreased interindividual variation in microbial communities, but this effect was not observed in late-gestation females. Our results highlight the need for a more holistic understanding of the downstream physiological effects of glucocorticoids, as well as the importance of context (here, gestational state and stage) in interpreting stress effects in ecology.
Assuntos
Microbioma Gastrointestinal , Lagartos , Microbiota , Animais , Bactérias/genética , Feminino , Glucocorticoides , GravidezRESUMO
The microbiome is critical for host survival and fitness, but gaps remain in our understanding of how this symbiotic community is structured. Despite evidence that related hosts often harbor similar bacterial communities, it is unclear whether this pattern is due to genetic similarities between hosts or to common ecological selection pressures. Here, using herbivorous rodents in the genus Neotoma, we quantify how geography, diet, and host genetics, alongside neutral processes, influence microbiome structure and stability under natural and captive conditions. Using bacterial and plant metabarcoding, we first characterized dietary and microbiome compositions for animals from 25 populations, representing seven species from 19 sites across the southwestern United States. We then brought wild animals into captivity, reducing the influence of environmental variation. In nature, geography, diet, and phylogeny collectively explained â¼50% of observed microbiome variation. Diet and microbiome diversity were correlated, with different toxin-enriched diets selecting for distinct microbial symbionts. Although diet and geography influenced natural microbiome structure, the effects of host phylogeny were stronger for both wild and captive animals. In captivity, gut microbiomes were altered; however, responses were species specific, indicating again that host genetic background is the most significant predictor of microbiome composition and stability. In captivity, diet effects declined and the effects of host genetic similarity increased. By bridging a critical divide between studies in wild and captive animals, this work underscores the extent to which genetics shape microbiome structure and stability in closely related hosts.
Assuntos
Dieta , Microbiota , Filogenia , Sigmodontinae/microbiologia , Animais , Animais Selvagens/microbiologia , Bactérias/classificação , Bactérias/genética , Geografia , RNA Ribossômico 16S , Sudoeste dos Estados Unidos , Especificidade da Espécie , SimbioseRESUMO
Mammals maintain close associations with gut microbes that provide numerous nutritional benefits, including vitamin synthesis. While most mammals obtain sufficient vitamins from their diets, deficiencies in various B vitamins (biotin, cobalamin, riboflavin, thiamine, etc.) are reported in captive animals. Biomedical and agricultural research has shown that gut microbes are capable of synthesizing B vitamins and assisting with host vitamin homeostasis. However, we have a poor understanding of distribution and abundance of B-vitamin synthesis across mammalian hosts. Here, we leveraged a publicly available metagenomic data set from 39 mammalian species and used MG-RAST to compare the abundance and composition of B-vitamin-synthesizing microbes across mammalian feeding strategies. We predicted that herbivores would have the highest abundance of genes associated with vitamin synthesis, as plant material is often low in B vitamins. However, this hypothesis was not supported. Instead, we found that relative abundances of genes associated with cobalamin and thiamine synthesis were significantly enriched in carnivorous mammals. The taxonomic community structure of microbes predicted to be involved in B-vitamin synthesis also varied significantly based on host feeding strategy. For example, the genus Acinetobacter primarily contributed to predicted biotin synthesis in carnivores but was not predicted to contribute to biotin synthesis in herbivores or omnivores. Given that B vitamins cannot be stored within the body, we hypothesize that microbial synthesis of B vitamins could be important for wild carnivores that regularly experience periods of fasting. Overall, these results shed light on the distribution and abundance of microbial B-vitamin synthesis across mammalian groups, with potential implications for captive animals. IMPORTANCE Microbial communities offer numerous physiological services to their hosts, but we still have a poor understanding of how these functions are structured across mammalian species. Specifically, our understanding of processes of vitamin synthesis across animals is severely limited. Here, we compared the abundance of genes associated with the synthesis of B vitamins and the taxonomic composition of the microbes containing these genes. We found that herbivores, omnivores, and carnivores harbor distinct communities of microbes that putatively conduct vitamin synthesis. Additionally, carnivores exhibited the highest abundance of genes associated with synthesis of specific B vitamins, cobalamin and thiamine. These data uncover the potential importance of microbes in the vitamin homeostasis of various mammals, especially carnivorous mammals. These findings have implications for understanding the microbial interactions that contribute to the nutritional requirements of animals held in captivity.
RESUMO
Many animals engage in a behavior known as natal philopatry, where after sexual maturity they return to their own birthplaces for subsequent reproduction. There are many proposed ultimate factors that may underlie the evolution of natal philopatry, such as genetic optimization, suitable living conditions, and friendly neighbors, which can improve the survival rates of offspring. However, here we propose that a key factor that has been overlooked could be the colonization of gut microbiota during early life and the effects these microorganisms have on host performance and fitness. In addition to the bacteria transmitted from the mother to offspring, microbes from the surrounding environment also account for a large proportion of the developing gut microbiome. While it was long believed that microbial species all have global distributions, we now know that there are substantial geographic differences and dispersal limitations to environmental microbes. The establishment of gut microbiota during early life has enormous impacts on animal development, including energy metabolism, training of the immune system, and cognitive development. Moreover, these microbial effects scale to influence animal performance and fitness, raising the possibility for natural selection to act on the integrated combination of gut microbial communities and host genetics (i.e. the holobiont). Therefore, in this paper, we propose a hypothesis: that optimization of host-microbe-environment interactions represents a potentially important yet overlooked reason for natal philopatry. Microbiota obtained by natal philopatry could help animals adapt to the environment and improve the survival rates of their young. We propose future directions to test these ideas, and the implications that this hypothesis has for our understanding of host-microbe interactions.
RESUMO
Understanding the forces that shape vertebrate gut microbial community assembly and composition throughout development is a major focus of the microbiome field. Here, we utilize the complex life cycle of the eastern newt (Notophthalmus viridescens) as a natural wild model to compare the effects of host and environmental factors on gut microbiome development. We compared bacterial inventories of each of the newt's three physiologically distinct developmental stages to determine if each hosted a unique community, or if the two stages which share an aquatic habitat (larvae and adults) harbored more similar communities than those of the third stage, the terrestrial juvenile eft. Additionally, we assessed how the contribution of selective processes to gut microbial assembly changed through development. We found that structurally, each life stage harbored a distinct community, which may be attributable to host factors. Further, across development, we found that community assembly processes shifted from a predominance of neutral to selective forces. However, habitat may also be important in determining community membership and diversity due the uniqueness of eft communities based on these metrics. Our results are similar to those in other vertebrate taxa, suggesting that gut microbiota assembly processes may be conserved across diverse lineages.
Assuntos
Microbioma Gastrointestinal , Microbiota , Animais , Bactérias , Larva , Notophthalmus viridescensRESUMO
Host-associated microbial communities have profound impacts on animal physiological function, especially nutrition and metabolism. The hypothesis of 'symmorphosis', which posits that the physiological systems of animals are regulated precisely to meet, but not exceed, their imposed functional demands, has been used to understand the integration of physiological systems across levels of biological organization. Although this idea has been criticized, it is recognized as having important heuristic value, even as a null hypothesis, and may, therefore, be a useful tool in understanding how hosts evolve in response to the function of their microbiota. Here, through a hologenomic lens, we discuss how the idea of symmorphosis may be applied to host-microbe interactions. Specifically, we consider scenarios in which host physiology may have evolved to collaborate with the microbiota to perform important functions, and, on the other hand, situations in which services have been completely outsourced to the microbiota, resulting in relaxed selection on host pathways. Following this theoretical discussion, we finally suggest strategies by which these currently speculative ideas may be explicitly tested to further our understanding of host evolution in response to their associated microbial communities. This article is part of the theme issue 'The role of the microbiome in host evolution'.