Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 4444, 2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38789421

RESUMO

Mitochondrial respiration is essential for the survival and function of T cells used in adoptive cellular therapies. However, strategies that specifically enhance mitochondrial respiration to promote T cell function remain limited. Here, we investigate methylation-controlled J protein (MCJ), an endogenous negative regulator of mitochondrial complex I expressed in CD8 cells, as a target for improving the efficacy of adoptive T cell therapies. We demonstrate that MCJ inhibits mitochondrial respiration in murine CD8+ CAR-T cells and that deletion of MCJ increases their in vitro and in vivo efficacy against murine B cell leukaemia. Similarly, MCJ deletion in ovalbumin (OVA)-specific CD8+ T cells also increases their efficacy against established OVA-expressing melanoma tumors in vivo. Furthermore, we show for the first time that MCJ is expressed in human CD8 cells and that the level of MCJ expression correlates with the functional activity of CD8+ CAR-T cells. Silencing MCJ expression in human CD8 CAR-T cells increases their mitochondrial metabolism and enhances their anti-tumor activity. Thus, targeting MCJ may represent a potential therapeutic strategy to increase mitochondrial metabolism and improve the efficacy of adoptive T cell therapies.


Assuntos
Linfócitos T CD8-Positivos , Imunoterapia Adotiva , Mitocôndrias , Animais , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Mitocôndrias/metabolismo , Humanos , Imunoterapia Adotiva/métodos , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Mitocondriais/metabolismo , Proteínas Mitocondriais/genética , Respiração Celular , Linhagem Celular Tumoral , Feminino , Ovalbumina/imunologia , Melanoma Experimental/imunologia , Melanoma Experimental/terapia
2.
J Immunol ; 212(8): 1381-1391, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38416029

RESUMO

Granzymes are a family of proteases used by CD8 T cells to mediate cytotoxicity and other less-defined activities. The substrate and mechanism of action of many granzymes are unknown, although they diverge among the family members. In this study, we show that mouse CD8+ tumor-infiltrating lymphocytes (TILs) express a unique array of granzymes relative to CD8 T cells outside the tumor microenvironment in multiple tumor models. Granzyme F was one of the most highly upregulated genes in TILs and was exclusively detected in PD1/TIM3 double-positive CD8 TILs. To determine the function of granzyme F and to improve the cytotoxic response to leukemia, we constructed chimeric Ag receptor T cells to overexpress a single granzyme, granzyme F or the better-characterized granzyme A or B. Using these doubly recombinant T cells, we demonstrated that granzyme F expression improved T cell-mediated cytotoxicity against target leukemia cells and induced a form of cell death other than chimeric Ag receptor T cells expressing only endogenous granzymes or exogenous granzyme A or B. However, increasing expression of granzyme F also had a detrimental impact on the viability of the host T cells, decreasing their persistence in circulation in vivo. These results suggest a unique role for granzyme F as a marker of terminally differentiated CD8 T cells with increased cytotoxicity, but also increased self-directed cytotoxicity, suggesting a potential mechanism for the end of the terminal exhaustion pathway.


Assuntos
Leucemia , Receptores de Antígenos Quiméricos , Animais , Camundongos , Linfócitos T CD8-Positivos , Granzimas , Leucemia/metabolismo , Receptores de Antígenos Quiméricos/metabolismo , Microambiente Tumoral , Citotoxicidade Imunológica
3.
Res Sq ; 2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-38196657

RESUMO

Chimeric antigen receptor T cells are an effective therapy for B-lineage malignancies. However, many patients relapse and this therapeutic has yet to show strong efficacy in other hematologic or solid tumors. One opportunity for improvement lies in the ability to generate T cells with desirable functional characteristics. Here, we dissect the biology of CD8+ CAR T cells (CAR8) by controlling whether the T cell has encountered cognate TCR antigen prior to CAR generation. We find that prior antigen experience influences multiple aspects of in vitro and in vivo CAR8 functionality, resulting in superior effector function and leukemia clearance in the setting of limiting target antigen density compared to antigen-inexperienced T cells. However, this comes at the expense of inferior proliferative capacity, susceptibility to phenotypic exhaustion and dysfunction, and inability to clear wildtype leukemia in the setting of limiting CAR+ cell dose. Epigenomic and transcriptomic comparisons of these cell populations identified overexpression of the Runx2 transcription factor as a novel strategy to enhance CAR8 function, with a differential impact depending on prior cell state. Collectively, our data demonstrate that prior antigen experience determines functional attributes of a CAR T cell, as well as amenability to functional enhancement by transcription factor modulation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA