Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Ecol Indic ; 73: 118-127, 2019 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-31413664

RESUMO

Ecosystems provide a variety of ecosystem services (ES), which act as key linkages between social and ecological systems. ES respond spatially and temporally to abiotic and biotic variation, and to management. Thus, resistant and resilient ES provision is expected to remain within a stable range when facing disturbances. In this study, generic indicators to evaluate resistance, potential resilience and capacity for transformation of ES provision are developed and their relevance demonstrated for a mountain grassland system. Indicators are based on plant trait composition (i.e. functional composition) and abiotic parameters determining ES provision at community, meta-community and landscape scales. First the resistance of an ES is indicated by its normal operating range characterized by observed values under current conditions. Second its resilience is assessed by its potential operating range - under hypotheses of reassembly from the community's species pool. Third its transformation potential is assessed for reassembly at meta-community and landscape scales. Using a state-and-transition model, possible management-related transitions between mountain grassland states were identified, and indicators calculated for two provisioning and two regulating ES. Overall, resilience properties varied across individual ES, supporting a focus on resilience of specific ES. The resilience potential of the two provisioning services was greater than for the two regulating services, both being linked to functional complementarity within communities. We also found high transformation potential reflecting functional redundancy among communities within each meta-community, and across meta-communities in the landscape. Presented indicators are promising for the projection of future ES provision and the identification of management options under environmental change.

2.
Reg Environ Change ; 17(8): 2251-2264, 2019 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-31427884

RESUMO

Land use and spatial patterns which reflect social-ecological legacies control ecosystem service (ES) supply. Yet, temporal changes in ES bundles associated with land use change are little studied. We developed original metrics to quantify synchronous historical variations in spatial patterns of land use and ES supply capacity, and demonstrated their use for two mountain grassland landscapes. Consistent with other European mountains, land use dynamics from the nineteenth century until the mid-twentieth century resulted in increased landscape heterogeneity, followed by homogenisation. In the persistently grassy landscape of Lautaret in France, landscape multifunctionality-the provision of multiple ES-coincided with greatest landscape heterogeneity and within-patch diversity in ecosystem services in the 1950-1970s. In the more complex Austrian landscape, where since the nineteenth century intensive production has concentrated in the valley and steep slopes have been abandoned, grassland landscape-level multifunctionality and spatial heterogeneity across grasslands have decreased. Increasing spatial heterogeneity across grasslands until the 1970s was paralleled at both sites by increasing fine-grained spatial variability for individual ES, but subsequent landscape simplification has promoted coarse-grained ES patterns This novel analysis of landscape-scale turnover highlighted how spatial patterns for individual ES scale to multiple grassland ES, depending on the nature of land use spatial variability. Under current socio-economic trends, sustaining or re-establishing fine-grained landscapes is often not feasible, thus future landscape planning and policies might focus on managing landscape and regional-scale multifunctionality. Also, the trends towards decreasing cultural ES and increasing regulating ES suggest a contradiction with current social demand and regional policies.

3.
Ecosyst Serv ; 26(Pt A): 79-94, 2019 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-31110934

RESUMO

Although the ecosystem services provided by mountain grasslands have been demonstrated to be highly vulnerable to environmental and management changes in the past, it remains unclear how they will be affected in the face of a combination of further land-use/cover changes and accelerating climate change. Moreover, the resilience of ecosystem services has not been sufficiently analysed under future scenarios. This study aimed to assess future impacts on multiple mountain grassland ecosystem services and their resilience. For a study area in the Central Alps (Stubai Valley, Austria), six ecosystem services were quantified using plant trait-based models for current and future conditions (in 2050 and 2100) considering three socio-economic scenarios. Under all scenarios, the greatest changes in ecosystem services were related to the natural reforestation of abandoned grassland, causing a shift from grassland to forest services. Although the high resilience potential of most ecosystem services will be maintained in the future, climate change seems to have negative impacts, especially on the resilience of forage production. Thus, decision makers and farmers will be faced with the higher vulnerability of ecosystem services of mountain grassland. Future policies should consider both socio-economic and environmental dynamics to manage valuable ecosystem services.

4.
Environ Manage ; 60(4): 679-692, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28620759

RESUMO

Land use and land cover patterns are shaped by the interplay of human and ecological processes. Thus, heterogeneous cultural landscapes have developed, delivering multiple ecosystem services. To guarantee human well-being, the development of land use types has to be evaluated. Scenario development and land use and land cover change models are well-known tools for assessing future landscape changes. However, as social and ecological systems are inextricably linked, land use-related management decisions are difficult to identify. The concept of social-ecological resilience can thereby provide a framework for understanding complex interlinkages on multiple scales and from different disciplines. In our study site (Stubai Valley, Tyrol/Austria), we applied a sequence of steps including the characterization of the social-ecological system and identification of key drivers that influence farmers' management decisions. We then developed three scenarios, i.e., "trend", "positive" and "negative" future development of farming conditions and assessed respective future land use changes. Results indicate that within the "trend" and "positive" scenarios pluri-activity (various sources of income) prevents considerable changes in land use and land cover and promotes the resilience of farming systems. Contrarily, reductions in subsidies and changes in consumer behavior are the most important key drivers in the negative scenario and lead to distinct abandonment of grassland, predominantly in the sub-alpine zone of our study site. Our conceptual approach, i.e., the combination of social and ecological methods and the integration of local stakeholders' knowledge into spatial scenario analysis, resulted in highly detailed and spatially explicit results that can provide a basis for further community development recommendations.


Assuntos
Agricultura/métodos , Conservação dos Recursos Naturais/métodos , Ecossistema , Áustria , Tomada de Decisões , Ecologia , Humanos , Análise Espacial
5.
Sci Total Environ ; 599-600: 750-759, 2017 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-28499223

RESUMO

Environmental conditions affect functional trait variability within communities and thus shape ecosystem properties. With the ability of plants to adapt morphologically and physiologically to changing abiotic conditions, gradient analysis was shown to be a suitable tool to identify the drivers which determine trait values. Apart from direct environmental drivers and indirect gradients such as elevation, also anthropogenic effects (e.g. irrigation, grazing) can influence trait variability. Our aim was to assess the interactive effects of different environmental drivers on major plant traits and to investigate how these are modulated within two different land-use types (hay meadow vs. pasture). An elevational gradient spanning 1000m was decomposed into its underlying direct components (temperature, water input, length of growing season) for the investigation of gradual responses of five prominent functional traits (aboveground dry weight (AGDW), vegetative height (VegHt), specific leaf area (SLA), leaf dry matter content (LDMC), leaf nitrogen concentration (LNC)) for key species from two functional groups (grasses, forbs) in the two land-use/management regimes. The present study revealed that the detailed analysis of single direct gradients provides substantial additional information on trait response which remains hidden or is even reversed if only indirect gradients such as elevation are analysed. However, trait response to the combination of the three direct gradients aligned surprisingly well with trait response to the indirect gradient underpinning the adequate representation of temperature, water input and length of growing season by elevation. The response of traits significantly depended on the management regime and corresponding intensity which was shown to play an overriding role and constrained and attenuated response ranges of traits to climatic gradients.

6.
PLoS Genet ; 4(3): e1000036, 2008 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-18369455

RESUMO

Despite the well-documented effects of plasma lipid lowering regimes halting atherosclerosis lesion development and reducing morbidity and mortality of coronary artery disease and stroke, the transcriptional response in the atherosclerotic lesion mediating these beneficial effects has not yet been carefully investigated. We performed transcriptional profiling at 10-week intervals in atherosclerosis-prone mice with human-like hypercholesterolemia and a genetic switch to lower plasma lipoproteins (Ldlr(-/-)Apo(100/100)Mttp(flox/flox) Mx1-Cre). Atherosclerotic lesions progressed slowly at first, then expanded rapidly, and plateaued after advanced lesions formed. Analysis of lesion expression profiles indicated that accumulation of lipid-poor macrophages reached a point that led to the rapid expansion phase with accelerated foam-cell formation and inflammation, an interpretation supported by lesion histology. Genetic lowering of plasma cholesterol (e.g., lipoproteins) at this point all together prevented the formation of advanced plaques and parallel transcriptional profiling of the atherosclerotic arterial wall identified 37 cholesterol-responsive genes mediating this effect. Validation by siRNA-inhibition in macrophages incubated with acetylated-LDL revealed a network of eight cholesterol-responsive atherosclerosis genes regulating cholesterol-ester accumulation. Taken together, we have identified a network of atherosclerosis genes that in response to plasma cholesterol-lowering prevents the formation of advanced plaques. This network should be of interest for the development of novel atherosclerosis therapies.


Assuntos
Aterosclerose/genética , Aterosclerose/metabolismo , Colesterol/metabolismo , Animais , Apolipoproteína B-100/genética , Aterosclerose/etiologia , Aterosclerose/patologia , Proteínas de Transporte/genética , Células Espumosas/metabolismo , Perfilação da Expressão Gênica , Humanos , Macrófagos/metabolismo , Camundongos , Camundongos Knockout , Camundongos Mutantes , Análise de Sequência com Séries de Oligonucleotídeos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/genética , Receptores de LDL/deficiência , Receptores de LDL/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA