Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 124
Filtrar
1.
Heliyon ; 10(12): e33505, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-39027434

RESUMO

Non-alcoholic fatty liver disease (NAFLD) is a significant consequence of metabolic dysfunction, often associated with changes in the intestinal microbiota. Prebiotics and probiotics have shown promise in NAFLD management. This study evaluated a silymarin-based herbal remedy with piperine and fulvic acid, alongside a probiotic blend of Bifidobacterium adolescentis, Bifidobacterium bifidum, Lactobacillus casei, and Lactobacillus rhamnosus. Using a NAFLD mouse model induced by a high-fat and high-fructose diet, we assessed biochemical parameters, liver function, glucose levels, and conducted histological analysis. Stool samples underwent 16S rRNA metagenomic analysis to explore changes in microbiota composition. Mice on the high-fat diet exhibited elevated lipids, liver enzymes, and glucose, with reduced high-density lipoprotein levels (with p value < 0.001). Treatment, particularly with F3 (silymarin-piperine-fulvic acid herbal remedy and probiotic blend), significantly reduced hepatic fat accumulation and improved gut microbiota composition. This study highlights the potential of silymarin-based therapy combined with probiotics in attenuating NAFLD progression.

2.
ACS Omega ; 9(28): 30120-30130, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39035924

RESUMO

The present study describes the development and validation of a simple and rapid HPLC method for the simultaneous quantification of exemestane and thymoquinone. The separation of both compounds was performed on a 5 µ C-18 column utilizing phase A as water/methanol (45:5 v/v) and phase B as acetonitrile (50 v/v) (total ratio of A/B = 40:60 v/v) in isocratic elution mode as the mobile phase at a flow rate of 0.8 mL/min. Further, the Box-Behnken design was used for optimizing the analytical method. The proposed method was validated for various parameters, and all parameters were found to be within an acceptable range. The simultaneous detection of both drugs was monitored at 243 nm with a retention time of 5.73 and 6.93 min, respectively. Moreover, the forced degradation studies were conducted under various stress conditions, and the relevance of the validated RP-HPLC method was further explored for the estimation of drugs from lipid-based nanoformulation. Taken together, the study construed the development of an efficient and robust method that could be used for the quantification of these agents in various in vitro as well as in vivo models.

3.
Sci Rep ; 14(1): 16588, 2024 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-39025925

RESUMO

Invasive fungal infections (IFI) pose a significant health burden, leading to high morbidity, mortality, and treatment costs. This study aims to develop and characterize nanomicelles for the codelivery of posaconazole and hemp seed oil for IFI via the oral route. The nanomicelles were prepared using a nanoprecipitation method and optimized through the Box Behnken design. The optimized nanomicelles resulted in satisfactory results for zeta potential, size, PDI, entrapment efficiency, TEM, and stability studies. FTIR and DSC results confirm the compatibility and amorphous state of the prepared nanomicelles. Confocal laser scanning microscopy showed that the optimized nanomicelles penetrated the tissue more deeply (44.9µm) than the suspension (25µm). The drug-loaded nanomicelles exhibited sustained cumulative drug release of 95.48 ± 3.27% for 24 h. The nanomicelles showed significant inhibition against Aspergillus niger and Candida albicans (22.4 ± 0.21 and 32.2 ± 0.46 mm, respectively). The pharmacokinetic study on Wistar rats exhibited a 1.8-fold increase in relative bioavailability for the nanomicelles compared to the suspension. These results confirm their therapeutic efficacy and lay the groundwork for future research and clinical applications, providing a promising synergistic antifungal nanomicelles approach for treating IFIs.


Assuntos
Antifúngicos , Óleos de Plantas , Animais , Antifúngicos/administração & dosagem , Antifúngicos/farmacocinética , Antifúngicos/farmacologia , Antifúngicos/química , Ratos , Óleos de Plantas/química , Óleos de Plantas/farmacologia , Óleos de Plantas/administração & dosagem , Triazóis/administração & dosagem , Triazóis/farmacocinética , Triazóis/química , Triazóis/farmacologia , Nanopartículas/química , Ratos Wistar , Candida albicans/efeitos dos fármacos , Infecções Fúngicas Invasivas/tratamento farmacológico , Aspergillus niger/efeitos dos fármacos , Micelas , Sementes/química , Liberação Controlada de Fármacos , Masculino , Portadores de Fármacos/química
4.
J Forensic Sci ; 69(5): 1918-1925, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38992862

RESUMO

Cannabis is one of the most consumed illicit drugs and the potency of cannabis products is of note due to health-related concerns. Hand-rubbed hashish is the ancient technique of extracting psychoactive resin from cannabis plants and is practiced in the Indian Himalayas. This study establishes the cannabinoid profile and potency of hand-rubbed hashish collected from 20 regions of the northwest Himalayas. Fifty-eight hashish samples were analyzed using a validated high-performance liquid chromatography-diode array detection (HPLC-DAD) method. Ten cannabinoids were quantified including acidic (THCA & CBDA), and neutral compounds (CBDV, THCV, CBD, CBG, CBN, Δ9-THC, Δ8-THC, and CBC). The mean concentration (w/w%) of Δ9-THC is 26%; THCA is 15% and THCTotal is 40% is observed in the studied hashish samples. The majority (70%) of the hashish samples were categorized in chemotype I with the THC:CBD:CBN ratio of 91:3:4, and the remaining 30% were categorized under chemotype II with the ratio of 76:15:8. Diverse qualities of hashish are produced in the studied regions as per the seed, plant selection, and skills of manual rubbing, which results in potency variations. The average difference between the least and highest potent hand-rubbed hashish of a region is 27 w/w% (THCTotal). The other studied non-psychoactive cannabinoids have a mean w/w% of <5%, followed by 6% of CBDA. It is concluded that the cultivated and wild cannabis fields in the northwest Himalayas belong to the drug-type cannabis subspecies. Hand-rubbed hashish holds traditional significance and impacts the current policies of legislation.


Assuntos
Canabinoides , Cannabis , Índia , Cannabis/química , Canabinoides/análise , Humanos , Cromatografia Líquida de Alta Pressão , Resinas Vegetais/química , Himalaia
5.
Curr Mol Med ; 24(11): 1317-1328, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38847251

RESUMO

Pregabalin (PG) and diclofenac diethylamine (DEE) are anti-inflammatory molecules that are effective in relieving inflammation and pain associated with musculoskeletal disorders, arthritis, and post-traumatic pain, among others. Intravenous and oral delivery of these two molecules has their limitations. However, the transdermal route is believed to be an alternate viable option for the delivery of therapeutic molecules with desired physicochemical properties. To this end, it is vital to understand the physicochemical properties of these drugs, dosage, and strategies to enhance permeation, thereby surmounting the associated constraints and concurrently attaining a sustained release of these therapeutic molecules when administered in combination. The present work hypothesizes the enhanced permeation and sustained release of pregabalin and diclofenac diethylamine across the skin, entrapped in the adhesive nano-organogel formulation, including permeation enhancers. The solubility studies of pregabalin and diclofenac diethylamine in combination were performed in different permeation enhancers. Oleic acid was optimized as the best permeation enhancer based on in vitro studies. Pluronic organogel containing pregabalin and diclofenac diethylamine with oleic acid was fabricated. Duro-Tak® (87-2196) was added to the organogel formulation as a pressure-sensitive adhesive to sustain the release profile of these two therapeutic molecules. The adhesive organogel was characterized for particle size, scanning electron microscopy, and contact angle measurement. The HPLC method developed for the quantification of the dual drug showed a retention time of 3.84 minutes and 9.69 minutes for pregabalin and diclofenac, respectively. The fabricated nanogel adhesive formulation showed the desired results with particle size and contact angle of 282 ± 57 nm and ≥120°, respectively. In vitro studies showed the percentage cumulative release of 24.90 ± 4.65% and 33.29 ± 4.81% for pregabalin and diclofenac, respectively. In order to accomplish transdermal permeation, the suggested hypothesis of fabricating PG and DEE nano-organogel in combination with permeation enhancers will be a viable drug delivery method. In comparison to a traditional gel formulation, oleic acid as a permeation enhancer increased the penetration of both PG and DEE from the organogel formulation. Notably, the studies showed that the use of pressure-sensitive adhesives enabled the sustained release of both PG and DEE.Therefore, the results anticipated the hypothesis that the transdermal delivery of adhesive PG and DEEbased nanogel across the human skin can be achieved to inhibit inflammation and pain.


Assuntos
Administração Cutânea , Diclofenaco , Nanogéis , Ácido Oleico , Pregabalina , Pregabalina/administração & dosagem , Pregabalina/farmacocinética , Pregabalina/química , Diclofenaco/administração & dosagem , Diclofenaco/farmacocinética , Diclofenaco/química , Diclofenaco/análogos & derivados , Ácido Oleico/química , Nanogéis/química , Animais , Adesivos/química , Adesivos/administração & dosagem , Pele/metabolismo , Pele/efeitos dos fármacos , Absorção Cutânea/efeitos dos fármacos , Liberação Controlada de Fármacos , Humanos , Preparações de Ação Retardada/farmacocinética , Sistemas de Liberação de Medicamentos/métodos , Polietilenoglicóis , Polietilenoimina
6.
ACS Omega ; 9(8): 9735-9752, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38434864

RESUMO

For achieving high effectiveness in the management of breast cancer, coadministration of drugs has attracted a lot of interest as a mode of therapy when compared to a single chemotherapeutic agent that often results in reduced therapeutic end results. Owing to their proven effectiveness, good patient compliance, and lower costs, oral anticancer drugs have received much attention. In the present work, we formulated the chitosan-coated nanoliposomes loaded with two lipophilic agents, namely, exemestane (EXE) and genistein (GEN). The formulation was prepared using the ethanol injection method, which is considered a simple method for getting the nanoliposomes. The formulation was optimized using Box-Behnken design (BBD) and was extensively characterized for particle size, ζ-potential, Fourier transform infrared (FTIR), differential scanning calorimetry (DSC), and X-ray diffraction (XRD) analysis. The sizes of conventional and coated liposomes were found to be 104.6 ± 3.8 and 120.3 ± 6.4 nm with a low polydispersity index of 0.399 and 0.381, respectively. The ζ-potential of the liposomes was observed to be -16.56 mV, which changed to a positive value of +22.4 mV, clearly indicating the complete coating of the nanoliposomes by the chitosan. The average encapsulation efficiency was found to be between 70 and 80% for all prepared formulations. The compatibility of the drug with excipients and complete dispersion of the drug inside the system were verified by FTIR, XRD, and DSC studies. Furthermore, the in vitro release studies concluded the sustained release pattern following the Korsmeyer-Peppas model as the best-fitting model with Fickian diffusion. Ex vivo studies showed better permeation of the chitosan-coated liposomes, which was further confirmed by confocal studies. The prepared chitosan-coated liposomes showed superior antioxidant activity (94.56%) and enhanced % cytotoxicity (IC50 7.253 ± 0.34 µM) compared to the uncoated liposomes. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay displayed better cytotoxicity of the chitosan-coated nanoliposomes compared to the plain drug, showing the better penetration and enhanced bioavailability of drugs inside the cells. The formulation was found to be safe for administration, which was confirmed using the toxicity studies performed on an animal model. The above data suggested that poorly soluble lipophilic drugs could be successfully delivered via chitosan-coated liposomes for their effective delivery in breast cancer.

7.
Curr Drug Targets ; 24(16): 1260-1270, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37953621

RESUMO

The objective of this review is to thoroughly investigate herbal nano gels as a promising drug delivery approach for the management of various chronic and acute disorders. Herbal nano gels are a novel and promising drug delivery technique, offering special benefits for better therapeutic efficacy. This review offers a comprehensive analysis of the herbal nano gels with a particular emphasis on their evaluation concerning conventional dosage forms, polymer selection criteria, drug release mechanisms, and applications. The comparison study demonstrates that herbal nano gels have different benefits over conventional dose forms. In the areas of oral administration for improved bioavailability and targeted delivery to the gastrointestinal tract, topical drug delivery for dermatological conditions, and targeted delivery strategies for the site-specific treatment of cancer, inflammatory diseases, and infections, they demonstrate encouraging results in transdermal drug delivery for systemic absorption. A promising platform for improved medication delivery and therapeutic effectiveness is provided by herbal nanogels. Understanding drug release mechanisms further contributes to the controlled and sustained delivery of herbal therapeutics. Some of the patents are discussed and the comparative analysis showcases their superiority over conventional dosage forms, and the polymer selection criteria ensure the design of efficient and optimized formulations. Herbal-based nano gels have become a potential approach for improving drug administration. They provide several advantages such as better stability, targeted delivery, and controlled release of therapeutic components. Herbal nano gels are a promising therapeutic approach with the ability to combat a wide range of conditions like cancer, wound healing and also improve patient compliance.


Assuntos
Sistemas de Liberação de Medicamentos , Polímeros , Humanos , Nanogéis , Sistemas de Liberação de Medicamentos/métodos , Géis , Administração Cutânea
8.
ACS Omega ; 8(45): 42102-42113, 2023 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-38024758

RESUMO

In this study, we fabricated and evaluated luliconazole-loaded electrospun nanofibers for anticandidal activity in the management of vaginal candidiasis. Polycaprolactone (PCL)/gelatin nanofibers were designed by the electrospinning technique, and the Box-Behnken design (BBD) was adopted for optimization to get tailored fibers. The luliconazole (LCZ) drug was mixed into different concentrations (2.5, 5, 7.5, and 10%) of tea tree oil (TT oil) and loaded into the PCL/gelatin nanofibrous mats. The effective anticandidal potential of nanofiber samples were analyzed by the disk-diffusion method. Scanning electron microscopy (SEM), Fourier transform infrared (FTIR), differential scanning calorimetry (DSC), XRD analysis, and in silico study were performed. The entrapment efficiency, swelling degree, mechanical strength, contact angle, mucoadhesion, drug release, and permeation study were assessed. The average diameter of the PCL/gelatin-optimized nanofiber was 153 nm. SEM reflected that the fabricated nanofibers were uniform and bead-free. FTIR and DSC analyzed the interaction and physical entrapment of the drug in the polymeric fibers. The entrapment efficiency of the drug-loaded nanofiber was found to be 89.2 ± 0.8%. Maximum swelling percentages at 4 h were 40.8, 18.9, and 14.0% and contact angles were 46.5°, 62.95°, and 65.78° for the blank, TT oil-loaded, and drug-loaded nanofiber, respectively, which indicated the hydrophilic nature of the fibers. The drug-loaded nanofiber had a high tensile strength with satisfactory mucoadhesive property that led to its adhesion to the vaginal mucosa with no tear. The drug-loaded nanofiber had a cumulative drug release of 67.7 ± 3.4% in 48 h, and the 12.8 ± 0.53 mm of zone of inhibition (ZOI) in 48 h illustrated an effective anticandidal activity. The TT oil-loaded nanofiber also exhibited a small ZOI of 4.3 ± 0.30 mm, indicating a synergistic effect to the antifungal activity of the drug-loaded nanofiber. LCZ-loaded nanofibers can emerge as a novel approach for vaginal drug delivery in the treatment of candida infection. Thus, this pharmaceutical investigation can help in formulating preclinical and clinical models.

9.
ACS Omega ; 8(33): 30057-30067, 2023 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-37636934

RESUMO

The present study involves the development of a reverse-phase HPLC method employing the quality-by-design methodology for the estimation of posaconazole and hemp seed oil simultaneously in nanomicelles formulation. The successful separation of posaconazole and hemp seed oil was achieved together, and this is the first study to develop and quantify posaconazole and hemp seed oil nanomicelles with linoleic acid as the internal standard and developed a dual drug analytical method employing a quality-by-design approach. The study was performed on a Shimadzu Prominence-I LC-2030C 3D Plus HPLC system with a PDA detector and the Shim-pack Solar C8 column (250 mm × 4.6 mm × 5 µm) for analysis with a mobile phase ratio of methanol:water (80:20% v/v) maintaining the flow rate of 1.0 mL/min. The final wavelength was selected as 240 nm and the elution of hemp seed oil and posaconazole was obtained at 2.7 and 4.6 min, respectively, with a maximum run time of 8.0 min. Box Behnken design was employed to optimize the method, keeping the retention time, peak area, and theoretical plates as dependent variables, while the mobile phase composition, flow rate, and wavelengths were chosen as independent variables. Parameters such as specificity, accuracy, robustness, linearity, sensitivity, precision, ruggedness, and forced degradation study were performed to validate the method. The calibration curves of posaconazole and hemp seed oil were determined to be linear throughout the range for concentration. The suggested approach can be effectively utilized for estimating the content of drugs from their nanoformulation and proved suitable for both in vivo and in vitro research.

10.
Gels ; 9(7)2023 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-37504395

RESUMO

The pervasiveness of fungal infections is an issue for skin health globally, and there are a reported 40 million cases in developed and developing countries. Novel drug delivery systems provide better therapeutic efficacy over conventional drug therapy due to their lower side effects and toxicity. Furthermore, combinations of essential oils can represent alternative therapies for fungal infections that are resistant to synthetic drugs. This study is aimed at developing Timur oil into a nanoemulgel and evaluating its antifungal effects. The development of the formulation involved the preparation of a nanoemulsion by the titration method, followed by its evaluation for various physicochemical properties. The antifungal activity of the nanoemulgel against Candida albicans was evaluated. The zone of inhibition was determined using the disk diffusion method. The results show that the developed nanoemulgel has a particle size of 139 ± 6.11 nm, a PDI of 0.309, and a zeta potential of -19.12 ± 2.73 mV. An in vitro drug release study showed a sustained release of 70 ± 0.289% of the drug over a period of 24 h. The % drug permeation across the skin was found to be 79.11 ± 0.319% over 24 h. However, the amount of drug retained in the skin was 56.45 µg/g. The flux for the nanoemulgel was found to be 94.947 µg/cm2/h, indicating a better permeability profile. The nanoemulgel formulation showed a zone of inhibition of 15 ± 2.45 mm, whereas the 1% ketoconazole cream (marketed preparation) exhibited a zone of inhibition of 13 ± 2.13 mm. The results of this study suggest that developed nanoemulgel containing Timur oil and rosemary oil has the potential to be used for treating topical fungal infections caused by Candida albicans.

11.
ACS Omega ; 8(28): 25101-25113, 2023 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-37483215

RESUMO

Exemestane (EXE), an irreversible aromatase inhibitor, is employed as a therapy for hormone-dependent breast cancer. Several studies have also established the budding effects of genistein (GEN) in various types of cancer such as breast, prostate, as well as skin due to its feeble estrogenic and anti-estrogenic properties. Considering the promising benefits of GEN, it was combined with EXE to accomplish superior therapeutic efficiency with fewer side effects. The quantification of the exact concentration of EXE and GEN when delivered as a combination would be required for which HPLC method was developed and validated. For this purpose, the C18 ODS column having dimensions of 150 × 4.6 mm, 5 µm, using mobile phase A as methanol:water (35:15, v/v), with formic acid (0.01%), and B as acetonitrile (in the ratio of A:B--30:70 v/v) at a flow rate of 1 mL/min was commonly used. The Box-Behnken design was chosen as our experimental model, and the interactions among the independent and dependent variables were analyzed. Parameters like linearity, system suitability, specificity, precision (intra- and interday), robustness, ruggedness, LOD (limit of detection), and LOQ (limit of quantification) were selected for the validation of our proposed method. EXE and GEN were eluted individually at 245 and 270.5 nm, respectively, while both of the agents were determined simultaneously at 256 nm, showing retention time as 2.10 and 1.67 min, respectively, and the calibration plot was observed to be linear in the range of 5-110 µg/mL. Hence, the method that we developed and validated was found to be suitable for the identification of both the drugs simultaneously in combination and in our in-house-developed nanoformulation.

12.
Pharm Dev Technol ; 28(7): 595-610, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37342048

RESUMO

Non-alcoholic fatty liver disease is one of the leading causes of death worldwide. Even if with such a high mortality there is no definite treatment approved. Thus, there is a need to develop a formulation which can have multiple pharmacological activities. Herbal drugs are among the most promising compounds that act by different pharmacological actions. For increasing the bio-activity of Silymarin we had isolated five active biomarker molecules from silymarin extract (as a Phytopharmaceutical) in our previous work. It possesses lower bioavailability due to poor solubility, lesser permeability and first pass metabolism effect. Therefore, from the literature we had screened two bioavailability enhancers i.e. piperine and fulvic acid for overcoming the drawbacks associated with silymarin. Hence, in this study we had first explored the ADME-T parameters and then evaluated their in-silico activity for different enzymes involved in inflammation and fibrosis. Interestingly, it was found that besides the bioavailability enhancing property, piperine and fulvic acid also shown anti-inflammatory and anti-fibrotic action, particularly more activity was demonstrated by fulvic acid than piperine. Furthermore, the concentration of the bioavailability enhancers i.e. 20% FA and 10% PIP were optimized by QbD assisted solubility studies. Moreover, the percentage release and apparent permeability coefficient of the optimized formulation was found to be 95% and 90%, respectively as compared to 6.54*106 and 1.63*106 respectively by SM suspension alone. Furthermore, it was found that plain rhodamine solution penetrated only up to 10 um whereas, formulation penetrated up to 30 um. Thus, combining these three, can not only increase the bioavailability of silymarin, but might also, increase the physiological action synergistically.


Assuntos
Silimarina , Silimarina/farmacologia , Solubilidade , Permeabilidade , Disponibilidade Biológica
13.
Drug Deliv Transl Res ; 13(11): 2739-2766, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37261602

RESUMO

Breast cancer due to the unpredictable and complex etiopathology combined with the non-availability of any effective drug treatment has become the major root of concern for oncologists globally. The number of women affected by the said disease state is increasing at an alarming rate attributed to environmental and lifestyle changes indicating at the exploration of a novel treatment strategy that can eradicate this aggressive disease. So far, it is treated by promising nanomedicine monotherapy; however, according to the numerous studies conducted, the inadequacy of these nano monotherapies in terms of elevated toxicity and resistance has been reported. This review, therefore, puts forth a new multimodal strategic approach to lipid-based nanoparticle-mediated combination drug delivery in breast cancer, emphasizing the recent advancements. A basic overview about the combination therapy and its index is firstly given. Then, the various nano-based combinations of chemotherapeutics involving the combination delivery of synthetic and herbal agents are discussed along with their examples. Further, the recent exploration of chemotherapeutics co-delivery with small interfering RNA (siRNA) agents has also been explained herein. Finally, a section providing a brief description of the delivery of chemotherapeutic agents with monoclonal antibodies (mAbs) has been presented. From this review, we aim to provide the researchers with deep insight into the novel and much more effective combinational lipid-based nanoparticle-mediated nanomedicines tailored specifically for breast cancer treatment resulting in synergism, enhanced antitumor efficacy, and low toxic effects, subsequently overcoming the hurdles associated with conventional chemotherapy.


Assuntos
Antineoplásicos , Neoplasias da Mama , Nanopartículas , Feminino , Humanos , Neoplasias da Mama/tratamento farmacológico , Terapia Combinada , Nanomedicina , Lipídeos , Sistemas de Liberação de Medicamentos
14.
Curr Mol Med ; 2023 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-37231732

RESUMO

RESEARCH BACKGROUND: Breast cancer is the second leading cause of death all over the world and is not only limited to females but also affects males. For estrogen receptor-positive breast cancer, tamoxifen has been considered the gold-line therapy for many decades. However, due to the side effects associated with the use of tamoxifen, its use is only limited to individuals in high-risk groups and limits its clinical application to moderate and/or lower-risk groups. Thus, there is a necessity to decrease the dose of tamoxifen, which can be achieved by targeting the drug to breast cancer cells and limiting its absorption to other body parts. PROBLEM STATEMENT: Artificial antioxidants used in the formulation preparation are assumed to upsurge the risk of cancer and liver damage in humans. The need of the hour is to explore bio-efficient antioxidants from natural plant sources as they are safer and additionally possess antiviral, anti-inflammatory, and anticancer properties. Objectives of the study and research: The objective of this hypothesis is to prepare tamoxifen-loaded PEGylated NiO nanoparticles using green chemistry, tumbling the toxic effects of the conventional method of synthesis for targeted delivery to breast cancer cells. Significance of the research work: The significance of the work is to hypothesize a green method for the synthesis of NiO nanoparticles that are eco-friendly, cost-effective, decrease multidrug resistance, and can be used for targeted therapy. Garlic extract contains an organosulfur compound (Allicin) which has drug-metabolizing, anti-oxidant, and tumour growth inhibition effects. In breast cancer, allicin sensitizes estrogen receptors, increasing the anticancer efficacy of tamoxifen and reducing offsite toxicity. Thus, this garlic extract would act as a reducing agent and a capping agent. The use of nickel salt can help in targeted delivery to breast cancer cells and, in turn, reduces drug toxicity in different organs. Future directions/recommendations: This novel strategy may aim for cancer management with less toxic agents acting as an apt therapeutic modality.

15.
Artigo em Inglês | MEDLINE | ID: mdl-37157219

RESUMO

Cannabis sativa is widely used as a folk medicine in many parts of the globe and has been reported to be a treasure trove of phytoconstituents, including cannabinoids, terpenoids, and flavonoids. Accumulating evidence from various pre-clinical and clinical studies revealed the therapeutic potential of these constituents in various pathological conditions, including chronic pain, inflammation, neurological disorders, and cancer. However, the psychoactive effect and addiction potential associated with cannabis use limited its clinical application. In the past two decades, extensive research on cannabis has led to a resurgence of interest in the clinical application of its constituents, particularly cannabinoids. This review summarizes the therapeutic effect and molecular mechanism of various phytoconstituents of cannabis. Furthermore, recently developed nanoformulations of cannabis constituents have also been reviewed. Since cannabis is often associated with illicit use, regulatory aspects are of vital importance and this review therefore also documented the regulatory aspects of cannabis use along with clinical data and commercial products of cannabis.

16.
Molecules ; 28(5)2023 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-36903587

RESUMO

In the emerging field of nanomedicine, nanoparticles have been widely considered as drug carriers and are now used in various clinically approved products. Therefore, in this study, we synthesized superparamagnetic iron-oxide nanoparticles (SPIONs) via green chemistry, and the SPIONs were further coated with tamoxifen-conjugated bovine serum albumin (BSA-SPIONs-TMX). The BSA-SPIONs-TMX were within the nanometric hydrodynamic size (117 ± 4 nm), with a small poly dispersity index (0.28 ± 0.02) and zeta potential of -30.2 ± 0.09 mV. FTIR, DSC, X-RD, and elemental analysis confirmed that BSA-SPIONs-TMX were successfully prepared. The saturation magnetization (Ms) of BSA-SPIONs-TMX was found to be ~8.31 emu/g, indicating that BSA-SPIONs-TMX possess superparamagnetic properties for theragnostic applications. In addition, BSA-SPIONs-TMX were efficiently internalized into breast cancer cell lines (MCF-7 and T47D) and were effective in reducing cell proliferation of breast cancer cells, with IC50 values of 4.97 ± 0.42 µM and 6.29 ± 0.21 µM in MCF-7 and T47D cells, respectively. Furthermore, an acute toxicity study on rats confirmed that these BSA-SPIONs-TMX are safe for use in drug delivery systems. In conclusion, green synthesized superparamagnetic iron-oxide nanoparticles have the potential to be used as drug delivery carriers and may also have diagnostic applications.


Assuntos
Nanopartículas de Magnetita , Nanopartículas , Neoplasias , Humanos , Ratos , Animais , Nanopartículas de Magnetita/química , Células MCF-7 , Nanopartículas Magnéticas de Óxido de Ferro , Portadores de Fármacos , Nanopartículas/química , Ferro , Óxidos
17.
Pharmaceutics ; 15(2)2023 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-36839787

RESUMO

Black cohosh (Cimicifuga racemosa) (CR) is a popular herb and is medically lauded for ameliorating myriad symptoms associated with menopause. However, its pharmaceutical limitations and non-availability of a patient-compliant drug delivery approach have precluded its prevalent use. Henceforth, the current research premise is aimed at developing an ethosomal gel incorporating triterpene enriched fraction (TEF) obtained from CR and evaluating its effectiveness through the transdermal application. TEF-loaded ethosomes were formulated using solvent injection, optimized and characterised. The optimized ethosomes were then dispersed into a polymeric gel base to form ethosomal gel which was further compared with the conventional gel by in-vitro and ex-vivo experiments. Here, the quality by design (QbD) approach was exploited for the optimization and development of ethosomal gel. The elements of QbD comprising initial risk assessment, design of experimentation (DoE), and model validation for the development of formulation have all been described in detail. The optimized ethosomes (F03) showed a nanometric size range, negative zeta potential and good entrapment. The in vitro release profile of gel revealed a burst release pattern following the Korsmeyer Peppas model having Fickian diffusion. The transdermal flux of ethosomal gel was observed to be more than that of conventional gel. Texture analysis and rheological characterization of the gel, revealed good strength showing shear thinning and pseudoplastic behaviour. The confocal microscope investigation revealed the deeper skin permeation of ethosomal gel than conventional gel. This result was further strengthened by DSC, IR and histological assessment of the animal skin (Wistar rat), treated with the optimized formulation. Conclusively, the implementation of QbD in the formulation resulted in a better understanding of the process and the product. It aids in the reduction of product variability and defects, hence improving product development efficiencies. Additionally, the ethosomal gel was found to be a more effective and successful carrier for TEF than the conventional gel through the transdermal route. Moreover, this demands an appropriate animal study, which is underway, for a stronger outcome.

18.
Heliyon ; 9(3): e13801, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36811017

RESUMO

From late 2019, whole world has been facing COVID-19 pandemic which is caused by SARS-CoV-2 virus. This virus primarily attacks the respiratory tract and enter host cell by binding with angiotensin 2 converting enzyme receptors present on alveoli of the lungs. Despite its binding in the lungs, many patients have reported gastrointestinal symptoms and indeed, RNA of the virus have been found in faecal sample of patients. This observation gave a clue of the involvement of gut-lung axis in this disease development and progression. From several studies reported in past two years, intestinal microbiome has shown to have bidirectional link with lungs i.e., gut dysbiosis increases the tendency of infection with COVID-19 and coronavirus can also cause perturbations in intestinal microbial composition. Thus, in this review we have tried to figure out the mechanisms by which disturbances in the gut composition can increase the susceptibility to COVID-19. Understanding these mechanisms can play a crucial role in decreasing the disease outcomes by manipulating the gut microbiome using prebiotics, probiotics, or combination of two. Even, faecal microbiota transplantation can also show better results, but intensive clinical trials need to be done first.

19.
J Biomater Sci Polym Ed ; 34(5): 674-694, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36345958

RESUMO

Non-targeted cancer therapy poses a huge risk to the cancer patients' life due to high toxicity offered by chemotherapy. Breast carcinoma is one of such deleterious disease, demanding a highly effectual treatment option which could reduce the toxicity and extend survival rate. Since, folate receptors extensively display themselves on the cancer cell surface, targeting them would help to ameliorate the progression and metastasis. Considering this, we envisaged and developed sulforaphane loaded folate engineered microbeads to target breast cancer cells over-expressing folate receptors. The surface engineered microbeads were optimized and developed using emulsion gelation technique, among which the best developed preparation demonstrated the particle size of 1302 ± 3.98 µm, % EE of 84.1 ± 3.32% and in vitro drug release of 98.1 ± 4.42%@24h. The spherical sized microbead showed controlled release with improved haem-compatibility in comparison to the bare drug. Free radical scavenging activity by ABTS assay showed strong anti-oxidant activity (IC50 20.62 µg/ml) of the targeted microbeads with profound cancer cell sup pressing effect (IC50 17.48 ± 3.5 µM) as observed in MCF-7 cells by MTT assay. Finally, in comparison to lone SFN, the targeted therapy showed enhanced uptake by the intestinal villi indicating a suitable oral targeted therapy against breast carcinoma.


Assuntos
Antineoplásicos , Neoplasias da Mama , Nanopartículas , Humanos , Feminino , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Microesferas , Ácido Fólico , Portadores de Fármacos/farmacologia , Linhagem Celular Tumoral , Sobrevivência Celular , Antineoplásicos/farmacologia
20.
Crit Rev Microbiol ; 49(6): 815-833, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36394607

RESUMO

Perturbations in microbial abundance or diversity in the intestinal lumen leads to intestinal inflammation and disruption of intestinal membrane which eventually facilitates the translocation of microbial metabolites or whole microbes to the liver and other organs through portal vein. This process of translocation finally leads to multitude of health disorders. In this review, we are going to focus on the mechanisms by which gut metabolites like SCFAs, tryptophan (Trp) metabolites, bile acids (BAs), ethanol, and choline can either cause the development/progression of non-alcoholic fatty liver disease (NAFLD) or serves as a therapeutic treatment for the disease. Alterations in some metabolites like SCFAs, Trp metabolites, etc., can serve as biomarker molecules whereas presence of specific metabolites like ethanol definitely leads to disease progression. Thus, proper understanding of these mechanisms will subsequently help in designing of microbiome-based therapeutic approaches. Furthermore, we have also focussed on the role of dysbiosis on the mucosal immune system. In addition, we would also compile up the microbiome-based clinical trials which are currently undergoing for the treatment of NAFLD and non-alcoholic steatohepatitis (NASH). It has been observed that the use of microbiome-based approaches like prebiotics, probiotics, symbiotics, etc., can act as a beneficial treatment option but more research needs to be done to know how to manipulate the composition of gut microbes.


Assuntos
Microbioma Gastrointestinal , Hepatopatia Gordurosa não Alcoólica , Probióticos , Humanos , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/terapia , Probióticos/uso terapêutico , Etanol
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA