Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 246
Filtrar
1.
Mol Ther Methods Clin Dev ; 32(4): 101323, 2024 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-39309261

RESUMO

X-linked lymphoproliferative disease (XLP1) results from SH2D1A gene mutations affecting the SLAM-associated protein (SAP). A regulated lentiviral vector (LV), XLP-SMART LV, designed to express SAP at therapeutic levels in T, NK, and NKT cells, is crucial for effective gene therapy. We experimentally identified 34 genomic regulatory elements of the SH2D1A gene and designed XLP-SMART LVs to emulate the lineage and stage-specific control of SAP. We screened them for their on-target enhancer activity in T, NK, and NKT cells and their off-target enhancer activity in B cell and myeloid populations. In combination, three enhancer elements increased SAP promoter expression up to 4-fold in on-target populations in vitro. NSG-Tg(Hu-IL15) xenograft studies with XLP-SMART LVs demonstrated up to 7-fold greater expression in on-target cells over a control EFS-LV, with no off-target expression. The XLP-SMART LVs exhibited stage-specific T and NK cell expression in peripheral blood, bone marrow, spleen, and thymic tissues (mimicking expression patterns of SAP). Transduction of XLP1 patient CD8+ T cells or BM CD34+ cells with XLP-SMART LVs restored restimulation-induced cell death and NK cytotoxicity to wild-type levels, respectively. These data demonstrate that it is feasible to create a lineage and stage-specific LV to restore the XLP1 phenotype by gene therapy.

3.
Nat Med ; 30(7): 1836-1846, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38886624

RESUMO

Increasing numbers of cell and gene therapies (CGTs) are emerging to treat and cure pediatric diseases. However, small market sizes limit the potential return on investment within the traditional biopharmaceutical drug development model, leading to a market failure. In this Perspective, we discuss major factors contributing to this failure, including high manufacturing costs, regulatory challenges, and licensing practices that do not incorporate pediatric development milestones, as well as potential solutions. We propose the creation of a new entity, the Pediatric Advanced Medicines Biotech, to lead late-stage development and commercialize pediatric CGTs outside the traditional biopharmaceutical model in the United States-where organized efforts to solve this problem have been lacking. The Pediatric Advanced Medicines Biotech would partner with the academic ecosystem, manufacture products in academic good manufacturing practice facilities and work closely with regulatory bodies, to ferry CGTs across the drug development 'valley of death' and, ultimately, increase access to lifesaving treatments for children in need.


Assuntos
Terapia Baseada em Transplante de Células e Tecidos , Terapia Genética , Humanos , Terapia Genética/legislação & jurisprudência , Criança , Estados Unidos , Pediatria , Acessibilidade aos Serviços de Saúde
4.
Nat Biotechnol ; 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38744947

RESUMO

Cancer immunotherapy with autologous chimeric antigen receptor (CAR) T cells faces challenges in manufacturing and patient selection that could be avoided by using 'off-the-shelf' products, such as allogeneic CAR natural killer T (AlloCAR-NKT) cells. Previously, we reported a system for differentiating human hematopoietic stem and progenitor cells into AlloCAR-NKT cells, but the use of three-dimensional culture and xenogeneic feeders precluded its clinical application. Here we describe a clinically guided method to differentiate and expand IL-15-enhanced AlloCAR-NKT cells with high yield and purity. We generated AlloCAR-NKT cells targeting seven cancers and, in a multiple myeloma model, demonstrated their antitumor efficacy, expansion and persistence. The cells also selectively depleted immunosuppressive cells in the tumor microenviroment and antagonized tumor immune evasion via triple targeting of CAR, TCR and NK receptors. They exhibited a stable hypoimmunogenic phenotype associated with epigenetic and signaling regulation and did not induce detectable graft versus host disease or cytokine release syndrome. These properties of AlloCAR-NKT cells support their potential for clinical translation.

5.
Mol Ther Methods Clin Dev ; 32(2): 101254, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38745893

RESUMO

A major limitation of gene therapy for sickle cell disease (SCD) is the availability and access to a potentially curative one-time treatment, due to high treatment costs. We have developed a high-titer bifunctional lentiviral vector (LVV) in a vector backbone that has reduced size, high vector yields, and efficient gene transfer to human CD34+ hematopoietic stem and progenitor cells (HSPCs). This LVV contains locus control region cores expressing an anti-sickling ßAS3-globin gene and two microRNA-adapted short hairpin RNA simultaneously targeting BCL11A and ZNF410 transcripts to maximally induce fetal hemoglobin (HbF) expression. This LVV induces high levels of anti-sickling hemoglobins (HbAAS3 + HbF), while concurrently decreasing sickle hemoglobin (HbS). The decrease in HbS and increased anti-sickling hemoglobin impedes deoxygenated HbS polymerization and red blood cell sickling at low vector copy per cell in transduced SCD patient CD34+ cells differentiated into erythrocytes. The dual alterations in red cell hemoglobins ameliorated the SCD phenotype in the SCD Berkeley mouse model in vivo. With high titer and enhanced transduction of HSPC at a low multiplicity of infection, this LVV will increase the number of patient doses of vector from production lots to decrease costs and help improve accessibility to gene therapy for SCD.

6.
Nat Commun ; 15(1): 3258, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38637498

RESUMO

Viral infections remain a major risk in immunocompromised pediatric patients, and virus-specific T cell (VST) therapy has been successful for treatment of refractory viral infections in prior studies. We performed a phase II multicenter study (NCT03475212) for the treatment of pediatric patients with inborn errors of immunity and/or post allogeneic hematopoietic stem cell transplant with refractory viral infections using partially-HLA matched VSTs targeting cytomegalovirus, Epstein-Barr virus, or adenovirus. Primary endpoints were feasibility, safety, and clinical responses (>1 log reduction in viremia at 28 days). Secondary endpoints were reconstitution of antiviral immunity and persistence of the infused VSTs. Suitable VST products were identified for 75 of 77 clinical queries. Clinical responses were achieved in 29 of 47 (62%) of patients post-HSCT including 73% of patients evaluable at 1-month post-infusion, meeting the primary efficacy endpoint (>52%). Secondary graft rejection occurred in one child following VST infusion as described in a companion article. Corticosteroids, graft-versus-host disease, transplant-associated thrombotic microangiopathy, and eculizumab treatment correlated with poor response, while uptrending absolute lymphocyte and CD8 T cell counts correlated with good response. This study highlights key clinical factors that impact response to VSTs and demonstrates the feasibility and efficacy of this therapy in pediatric HSCT.


Assuntos
Infecções por Vírus Epstein-Barr , Transplante de Células-Tronco Hematopoéticas , Viroses , Humanos , Criança , Herpesvirus Humano 4 , Fatores de Risco , Transplante de Células-Tronco Hematopoéticas/efeitos adversos
7.
Clin Immunol ; 261: 109942, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38367737

RESUMO

Severe combined immunodeficiency (SCID) is characterized by a severe deficiency in T cell numbers. We analyzed data collected (n = 307) for PHA-based T cell proliferation from the PIDTC SCID protocol 6901, using either a radioactive or flow cytometry method. In comparing the two groups, a smaller number of the patients tested by flow cytometry had <10% of the lower limit of normal proliferation as compared to the radioactive method (p = 0.02). Further, in patients with CD3+ T cell counts between 51 and 300 cells/µL, there was a higher proliferative response with the PHA flow assay compared to the 3H-T assay (p < 0.0001), suggesting that the method of analysis influences the resolution and interpretation of PHA results. Importantly, we observed many SCID patients with profound T cell lymphopenia having normal T cell proliferation when assessed by flow cytometry. We recommend this test be considered only as supportive in the diagnosis of typical SCID.


Assuntos
Linfopenia , Imunodeficiência Combinada Severa , Recém-Nascido , Humanos , Imunodeficiência Combinada Severa/diagnóstico , Linfopenia/diagnóstico , Triagem Neonatal/métodos , Linfócitos T , Proliferação de Células
8.
J Allergy Clin Immunol ; 153(5): 1423-1431.e2, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38290608

RESUMO

BACKGROUND: P47phox (neutrophil cytosolic factor-1) deficiency is the most common cause of autosomal recessive chronic granulomatous disease (CGD) and is considered to be associated with a milder clinical phenotype. Allogeneic hematopoietic cell transplantation (HCT) for p47phox CGD is not well-described. OBJECTIVES: We sought to study HCT for p47phox CGD in North America. METHODS: Thirty patients with p47phox CGD who received allogeneic HCT at Primary Immune Deficiency Treatment Consortium centers since 1995 were included. RESULTS: Residual oxidative activity was present in 66.7% of patients. In the year before HCT, there were 0.38 CGD-related infections per person-years. Inflammatory diseases, predominantly of the lungs and bowel, occurred in 36.7% of the patients. The median age at HCT was 9.1 years (range 1.5-23.6 years). Most HCTs (90%) were performed after using reduced intensity/toxicity conditioning. HCT sources were HLA-matched (40%) and -mismatched (10%) related donors or HLA-matched (36.7%) and -mismatched (13.3%) unrelated donors. CGD-related infections after HCT decreased significantly to 0.06 per person-years (P = .038). The frequency of inflammatory bowel disease and the use of steroids also decreased. The cumulative incidence of graft failure and second HCT was 17.9%. The 2-year overall and event-free survival were 92.3% and 82.1%, respectively, while at 5 years they were 85.7% and 77.0%, respectively. In the surviving patients evaluated, ≥95% donor myeloid chimerism at 1 and 2 years after HCT was 93.8% and 87.5%, respectively. CONCLUSIONS: Patients with p47phox CGD suffer from a significant disease burden that can be effectively alleviated by HCT. Similar to other forms of CGD, HCT should be considered for patients with p47phox CGD.


Assuntos
Doença Granulomatosa Crônica , Transplante de Células-Tronco Hematopoéticas , NADPH Oxidases , Humanos , Doença Granulomatosa Crônica/terapia , Doença Granulomatosa Crônica/genética , NADPH Oxidases/genética , Masculino , Feminino , Criança , Pré-Escolar , Adolescente , Lactente , Adulto Jovem , Transplante Homólogo , Condicionamento Pré-Transplante/métodos , Doença Enxerto-Hospedeiro , Adulto , Resultado do Tratamento
9.
J Allergy Clin Immunol Pract ; 12(5): 1139-1149, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38246560

RESUMO

During the past 20 years, gene editing has emerged as a novel form of gene therapy. Since the publication of the first potentially therapeutic gene editing platform for genetic disorders, increasingly sophisticated editing technologies have been developed. As with viral vector-mediated gene addition, inborn errors of immunity are excellent candidate diseases for a corrective autologous hematopoietic stem cell gene editing strategy. Research on gene editing for inborn errors of immunity is still entirely preclinical, with no trials yet underway. However, with editing techniques maturing, scientists are investigating this novel form of gene therapy in context of an increasing number of inborn errors of immunity. Here, we present an overview of these studies and the recent progress moving these technologies closer to clinical benefit.


Assuntos
Edição de Genes , Terapia Genética , Humanos , Edição de Genes/métodos , Terapia Genética/métodos , Animais , Sistemas CRISPR-Cas , Agamaglobulinemia/genética , Agamaglobulinemia/terapia , Imunodeficiência Combinada Severa/genética , Imunodeficiência Combinada Severa/terapia , Imunodeficiência Combinada Severa/imunologia , Transplante de Células-Tronco Hematopoéticas
10.
J Allergy Clin Immunol ; 153(1): 287-296, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37793572

RESUMO

BACKGROUND: The Primary Immune Deficiency Treatment Consortium (PIDTC) enrolled children in the United States and Canada onto a retrospective multicenter natural history study of hematopoietic cell transplantation (HCT). OBJECTIVE: We investigated outcomes of HCT for severe combined immunodeficiency (SCID). METHODS: We evaluated the chronic and late effects (CLE) after HCT for SCID in 399 patients transplanted from 1982 to 2012 at 32 PIDTC centers. Eligibility criteria included survival to at least 2 years after HCT without need for subsequent cellular therapy. CLE were defined as either conditions present at any time before 2 years from HCT that remained unresolved (chronic), or new conditions that developed beyond 2 years after HCT (late). RESULTS: The cumulative incidence of CLE was 25% in those alive at 2 years, increasing to 41% at 15 years after HCT. CLE were most prevalent in the neurologic (9%), neurodevelopmental (8%), and dental (8%) categories. Chemotherapy-based conditioning was associated with decreased-height z score at 2 to 5 years after HCT (P < .001), and with endocrine (P < .001) and dental (P = .05) CLE. CD4 count of ≤500 cells/µL and/or continued need for immunoglobulin replacement therapy >2 years after transplantation were associated with lower-height z scores. Continued survival from 2 to 15 years after HCT was 90%. The presence of any CLE was associated with increased risk of late death (hazard ratio, 7.21; 95% confidence interval, 2.71-19.18; P < .001). CONCLUSION: Late morbidity after HCT for SCID was substantial, with an adverse impact on overall survival. This study provides evidence for development of survivorship guidelines based on disease characteristics and treatment exposure for patients after HCT for SCID.


Assuntos
Transplante de Células-Tronco Hematopoéticas , Imunodeficiência Combinada Severa , Criança , Humanos , Imunodeficiência Combinada Severa/etiologia , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Incidência , Canadá/epidemiologia , Estudos Retrospectivos , Condicionamento Pré-Transplante
11.
Immunol Rev ; 322(1): 148-156, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38033164

RESUMO

Severe combined immune deficiency due to adenosine deaminase deficiency (ADA SCID) is an inborn error of immunity with pan-lymphopenia, due to accumulated cytotoxic adenine metabolites. ADA SCID has been treated using gene therapy with a normal human ADA gene added to autologous hematopoietic stem cells (HSC) for over 30 years. Iterative improvements in vector design, HSC processing methods, and clinical HSC transplant procedures have led nearly all ADA SCID gene therapy patients to achieve consistently beneficial immune restoration with stable engraftment of ADA gene-corrected HSC over the duration of observation (as long as 20 years). One gene therapy for ADA SCID is approved by the European Medicines Agency (EMA) in the European Union (EU) and another is being advanced to licensure in the U.S. and U.K. Despite the clear-cut benefits and safety of this curative gene and cell therapy, it remains challenging to achieve sustained availability and access, especially for rare disorders like ADA SCID.


Assuntos
Agamaglobulinemia , Transplante de Células-Tronco Hematopoéticas , Imunodeficiência Combinada Severa , Humanos , Imunodeficiência Combinada Severa/genética , Imunodeficiência Combinada Severa/terapia , Adenosina Desaminase/genética , Terapia Genética/métodos
12.
Gene Ther ; 30(10-11): 738-746, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37935854

RESUMO

Despite the ups and downs in the field over three decades, the science of gene therapy has continued to advance and provide enduring treatments for increasing number of diseases. There are active clinical trials approaching a variety of inherited and acquired disorders of different organ systems. Approaches include ex vivo modification of hematologic stem cells (HSC), T lymphocytes and other immune cells, as well as in vivo delivery of genes or gene editing reagents to the relevant target cells by either local or systemic administration. In this article, we highlight success and ongoing challenges in three areas of high activity in gene therapy: inherited blood cell diseases by targeting hematopoietic stem cells, malignant disorders using immune effector cells genetically modified with chimeric antigen receptors, and ophthalmologic, neurologic, and coagulation disorders using in vivo administration of adeno-associated virus (AAV) vectors. In recent years, there have been true cures for many of these diseases, with sustained clinical benefit that exceed those from other medical approaches. Each of these treatments faces ongoing challenges, namely their high one-time costs and the complexity of manufacturing the therapeutic agents, which are biological viruses and cell products, at pharmacologic standards of quality and consistency. New models of reimbursement are needed to make these innovative treatments widely available to patients in need.


Assuntos
Terapia Genética , Neoplasias , Humanos , Linfócitos T , Células-Tronco Hematopoéticas , Vetores Genéticos/genética , Dependovirus/genética , Edição de Genes
13.
J Allergy Clin Immunol ; 152(6): 1619-1633.e11, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37659505

RESUMO

BACKGROUND: Chronic granulomatous disease (CGD) is caused by defects in any 1 of the 6 subunits forming the nicotinamide adenine dinucleotide phosphate oxidase complex 2 (NOX2), leading to severely reduced or absent phagocyte-derived reactive oxygen species production. Almost 50% of patients with CGD have inflammatory bowel disease (CGD-IBD). While conventional IBD therapies can treat CGD-IBD, their benefits must be weighed against the risk of infection. Understanding the impact of NOX2 defects on the intestinal microbiota may lead to the identification of novel CGD-IBD treatments. OBJECTIVE: We sought to identify microbiome and metabolome signatures that can distinguish individuals with CGD and CGD-IBD. METHODS: We conducted a cross-sectional observational study of 79 patients with CGD, 8 pathogenic variant carriers, and 19 healthy controls followed at the National Institutes of Health Clinical Center. We profiled the intestinal microbiome (amplicon sequencing) and stool metabolome, and validated our findings in a second cohort of 36 patients with CGD recruited through the Primary Immune Deficiency Treatment Consortium. RESULTS: We identified distinct intestinal microbiome and metabolome profiles in patients with CGD compared to healthy individuals. We observed enrichment for Erysipelatoclostridium spp, Sellimonas spp, and Lachnoclostridium spp in CGD stool samples. Despite differences in bacterial alpha and beta diversity between the 2 cohorts, several taxa correlated significantly between both cohorts. We further demonstrated that patients with CGD-IBD have a distinct microbiome and metabolome profile compared to patients without CGD-IBD. CONCLUSION: Intestinal microbiome and metabolome signatures distinguished patients with CGD and CGD-IBD, and identified potential biomarkers and therapeutic targets.


Assuntos
Microbioma Gastrointestinal , Doença Granulomatosa Crônica , Doenças Inflamatórias Intestinais , Humanos , Doença Granulomatosa Crônica/genética , NADPH Oxidases , Estudos Transversais
14.
Gene Ther ; 30(12): 826-834, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37568039

RESUMO

Ex-vivo gene therapy has been shown to be an effective method for treating bone defects in pre-clinical models. As gene therapy is explored as a potential treatment option in humans, an assessment of the safety profile becomes an important next step. The purpose of this study was to evaluate the biodistribution of viral particles at the defect site and various internal organs in a rat femoral defect model after implantation of human ASCs transduced with lentivirus (LV) with two-step transcriptional activation (TSTA) of bone morphogenetic protein-2 (LV-TSTA-BMP-2). Animals were sacrificed at 4-, 14-, 56-, and 84-days post implantation. The defects were treated with either a standard dose (SD) of 5 million cells or a high dose (HD) of 15 million cells to simulate a supratherapeutic dose. Treatment groups included (1) SD LV-TSTA-BMP-2 (2) HD LV-TSTA-BMP-2, (3) SD LV-TSTA-GFP (4) HD LV-TSTA-GFP and (5) SD nontransduced cells. The viral load at the defect site and ten organs was assessed at each timepoint. Histology of all organs, ipsilateral tibia, and femur were evaluated at each timepoint. There were nearly undetectable levels of LV-TSTA-BMP-2 transduced cells at the defect site at 84-days and no pathologic changes in any organ at all timepoints. In conclusion, human ASCs transduced with a lentiviral vector were both safe and effective in treating critical size bone defects in a pre-clinical model. These results suggest that regional gene therapy using lentiviral vector to treat bone defects has the potential to be a safe and effective treatment in humans.


Assuntos
Proteína Morfogenética Óssea 2 , Lentivirus , Ratos , Humanos , Animais , Distribuição Tecidual , Lentivirus/genética , Lentivirus/metabolismo , Proteína Morfogenética Óssea 2/genética , Proteína Morfogenética Óssea 2/metabolismo , Terapia Genética/métodos , Células-Tronco/metabolismo
15.
ACS Appl Mater Interfaces ; 15(35): 41299-41309, 2023 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-37616579

RESUMO

Intracellular delivery technologies that are cost-effective, non-cytotoxic, efficient, and cargo-agnostic are needed to enable the manufacturing of cell-based therapies as well as gene manipulation for research applications. Current technologies capable of delivering large cargoes, such as plasmids and CRISPR-Cas9 ribonucleoproteins (RNPs), are plagued with high costs and/or cytotoxicity and often require substantial specialized equipment and reagents, which may not be available in resource-limited settings. Here, we report an intracellular delivery technology that can be assembled from materials available in most research laboratories, thus democratizing access to intracellular delivery for researchers and clinicians in low-resource areas of the world. These filtroporation devices permeabilize cells by pulling them through the pores of a cell culture insert by the application of vacuum available in biosafety cabinets. In a format that costs less than $10 in materials per experiment, we demonstrate the delivery of fluorescently labeled dextran, expression plasmids, and RNPs for gene knockout to Jurkat cells and human CD34+ hematopoietic stem and progenitor cell populations with delivery efficiencies of up to 40% for RNP knockout and viabilities of >80%. We show that functionalizing the surfaces of the filters with fluorinated silane moieties further enhances the delivery efficiency. These devices are capable of processing 500,000 to 4 million cells per experiment, and when combined with a 3D-printed vacuum application chamber, this throughput can be straightforwardly increased 6-12-fold in parallel experiments.


Assuntos
Silanos , Células-Tronco , Humanos , Técnicas de Inativação de Genes , Técnicas de Cultura de Células , Terapia Baseada em Transplante de Células e Tecidos
16.
Viruses ; 15(3)2023 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-36992422

RESUMO

Investigations to understand the function and control of the globin genes have led to some of the most exciting molecular discoveries and biomedical breakthroughs of the 20th and 21st centuries. Extensive characterization of the globin gene locus, accompanied by pioneering work on the utilization of viruses as human gene delivery tools in human hematopoietic stem and progenitor cells (HPSCs), has led to transformative and successful therapies via autologous hematopoietic stem-cell transplant with gene therapy (HSCT-GT). Due to the advanced understanding of the ß-globin gene cluster, the first diseases considered for autologous HSCT-GT were two prevalent ß-hemoglobinopathies: sickle cell disease and ß-thalassemia, both affecting functional ß-globin chains and leading to substantial morbidity. Both conditions are suitable for allogeneic HSCT; however, this therapy comes with serious risks and is most effective using an HLA-matched family donor (which is not available for most patients) to obtain optimal therapeutic and safe benefits. Transplants from unrelated or haplo-identical donors carry higher risks, although they are progressively improving. Conversely, HSCT-GT utilizes the patient's own HSPCs, broadening access to more patients. Several gene therapy clinical trials have been reported to have achieved significant disease improvement, and more are underway. Based on the safety and the therapeutic success of autologous HSCT-GT, the U.S. Food and Drug Administration (FDA) in 2022 approved an HSCT-GT for ß-thalassemia (Zynteglo™). This review illuminates the ß-globin gene research journey, adversities faced, and achievements reached; it highlights important molecular and genetic findings of the ß-globin locus, describes the predominant globin vectors, and concludes by describing promising results from clinical trials for both sickle cell disease and ß-thalassemia.


Assuntos
Anemia Falciforme , Transplante de Células-Tronco Hematopoéticas , Hemoglobinopatias , Talassemia beta , Humanos , Talassemia beta/genética , Talassemia beta/terapia , Transplante de Células-Tronco Hematopoéticas/métodos , Vetores Genéticos/genética , Hemoglobinopatias/genética , Hemoglobinopatias/terapia , Anemia Falciforme/genética , Anemia Falciforme/terapia , Terapia Genética/métodos , Globinas beta/genética
18.
Cell ; 186(7): 1398-1416.e23, 2023 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-36944331

RESUMO

CD3δ SCID is a devastating inborn error of immunity caused by mutations in CD3D, encoding the invariant CD3δ chain of the CD3/TCR complex necessary for normal thymopoiesis. We demonstrate an adenine base editing (ABE) strategy to restore CD3δ in autologous hematopoietic stem and progenitor cells (HSPCs). Delivery of mRNA encoding a laboratory-evolved ABE and guide RNA into a CD3δ SCID patient's HSPCs resulted in a 71.2% ± 7.85% (n = 3) correction of the pathogenic mutation. Edited HSPCs differentiated in artificial thymic organoids produced mature T cells exhibiting diverse TCR repertoires and TCR-dependent functions. Edited human HSPCs transplanted into immunodeficient mice showed 88% reversion of the CD3D defect in human CD34+ cells isolated from mouse bone marrow after 16 weeks, indicating correction of long-term repopulating HSCs. These findings demonstrate the preclinical efficacy of ABE in HSPCs for the treatment of CD3δ SCID, providing a foundation for the development of a one-time treatment for CD3δ SCID patients.


Assuntos
Imunodeficiência Combinada Severa , Linfócitos T , Humanos , Animais , Camundongos , Imunodeficiência Combinada Severa/genética , Imunodeficiência Combinada Severa/terapia , Edição de Genes , Camundongos SCID , Complexo CD3 , Receptores de Antígenos de Linfócitos T/genética
19.
J Allergy Clin Immunol Pract ; 11(6): 1665-1675, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36736952

RESUMO

Inherited defects in the adenosine deaminase (ADA) gene typically cause severe combined immunodeficiency. In addition to infections, ADA-deficient patients can present with neurodevelopmental, behavioral, hearing, skeletal, lung, heart, skin, kidney, urogenital, and liver abnormalities. Some patients also suffer from autoimmunity and malignancies. In recent years, there have been remarkable advances in the management of ADA deficiency. Most ADA-deficient patients can be identified by newborn screening for severe combined immunodeficiency, which facilitates early diagnosis and treatment of asymptomatic infants. Most patients benefit from enzyme replacement therapy (ERT). Allogeneic hematopoietic cell transplantation from an HLA-matched sibling donor or HLA-matched family member donor with no conditioning is currently the preferable treatment. When matched sibling donor or matched family member donor is not available, autologous ADA gene therapy with nonmyeloablative conditioning and ERT withdrawal, which is reported in recent studies to result in 100% overall survival and 90% to 95% engraftment, should be pursued. If gene therapy is not immediately available, ERT can be continued for a few years, although its excessive cost might be prohibitive. The recent improved outcome of hematopoietic cell transplantation using HLA-mismatched family-related donors or HLA-matched unrelated donors, after reduced-intensity conditioning, suggests that such procedures might also be considered rather than continuing ERT for prolonged periods. Long-term follow-up will further assist in determining the optimal treatment approach for ADA-deficient patients.


Assuntos
Agamaglobulinemia , Transplante de Células-Tronco Hematopoéticas , Imunodeficiência Combinada Severa , Humanos , Lactente , Recém-Nascido , Adenosina Desaminase/genética , Agamaglobulinemia/diagnóstico , Agamaglobulinemia/terapia , Agamaglobulinemia/genética , Transplante de Células-Tronco Hematopoéticas/métodos , Imunodeficiência Combinada Severa/diagnóstico , Imunodeficiência Combinada Severa/genética , Imunodeficiência Combinada Severa/terapia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA