Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 23(5)2022 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-35269601

RESUMO

Luciferases catalyze light-emitting reactions that produce a rainbow of colors from their substrates (luciferins), molecular oxygen, and often additional cofactors. These bioluminescence (BL) systems have afforded an incredible variety of basic research and medical applications. Driven by the importance of BL-based non-invasive animal imaging (BLI) applications, especially in support of cancer research, new BL systems have been developed by engineering beetle luciferase (Luc) variants and synthetic substrate combinations to produce red to near-infrared (nIR) light to improve imaging sensitivity and resolution. To stimulate the application of BLI research and advance the development of improved reagents for BLI, we undertook a systematic comparison of the spectroscopic and BL properties of seven beetle Lucs with LH2 and nine substrates, which included two new quinoline ring-containing analogs. The results of these experiments with purified Luc enzymes in vitro and in live HEK293T cells transfected with luc genes have enabled us to identify Luc/analog combinations with improved properties compared to those previously reported and to provide live cell BL data that may be relevant to in vivo imaging applications. Additionally, we found strong candidate enzyme/substrate pairs for in vitro biomarker applications requiring nIR sources with minimal visible light components. Notably, one of our new substrates paired with a previously developed Luc variant was demonstrated to be an excellent in vitro source of nIR and a potentially useful BL system for improved resolution in BLI.


Assuntos
Besouros , Luciferinas , Animais , Luciferina de Vaga-Lumes/química , Células HEK293 , Humanos , Raios Infravermelhos , Luciferases/química , Luciferases/genética , Medições Luminescentes/métodos
2.
Sci Rep ; 8(1): 5990, 2018 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-29662072

RESUMO

Effective methods for monitoring eukaryotic gene expression and regulation based on bioluminescence - the emission of light by living organisms - are well established. Typically, the expression of a gene of interest is reported on with high sensitivity and over a wide dynamic range by the emission of light from a variety of engineered luciferase genes from beetles and marine organisms. The luciferase reporter genes are expressed downstream of the target gene or promoter and detected after exogenous addition of luciferin substrates. We describe a novel bioluminescence reporter method for the simultaneous monitoring of two genes expressing engineered firefly luciferase variants that emit readily distinguishable green and red light signals. The key feature is the selectivity of the enzymes for two luciferin substrates that determine each emission color. To validate our method, we performed a complex promoter transactivation experiment side-by-side with the Dual-Luciferase Reporter protocol and obtained essentially identical results. Additional comparative experiments demonstrated that our assay system provided improvements in background, cell normalization, and detectability compared to representative available methods. With access to a luminometer equipped with two optical filters, this method is an excellent choice for genetic reporter assays that can be performed with a single reagent solution.


Assuntos
Luciferina de Vaga-Lumes/metabolismo , Expressão Gênica , Genes Reporter , Luciferases de Vaga-Lume/metabolismo , Substâncias Luminescentes/metabolismo , Medições Luminescentes/métodos , Células HEK293 , Humanos , Luciferases de Vaga-Lume/análise , Luciferases de Vaga-Lume/genética , Substâncias Luminescentes/análise , Regiões Promotoras Genéticas , Engenharia de Proteínas , Especificidade por Substrato , Ativação Transcricional , Transfecção
3.
Anal Biochem ; 534: 36-39, 2017 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-28687486

RESUMO

Beetle luciferases have been adapted for live cell imaging where bioluminescence is dependent on the cellular availability of ATP, O2, and added luciferin. Previous Photinus pyralis red-emitting variants with high Km values for ATP have performed disappointingly in live cells despite having much higher relative specific activities than enzymes like Click Beetle Red (CBR). We engineered a luciferase variant PLR3 having a Km value for ATP similar to CBR and ∼2.6-fold higher specific activity. The red-emitting PLR3 was ∼2.5-fold brighter than CBR in living HEK293T and HeLa cells, an improvement consistent with the importance of the Km value in low ATP environments.


Assuntos
Trifosfato de Adenosina/análise , Luciferases de Vaga-Lume/química , Medições Luminescentes , Animais , Vaga-Lumes , Células HEK293 , Células HeLa , Humanos , Luciferases de Vaga-Lume/metabolismo
4.
Anal Biochem ; 484: 148-53, 2015 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-26049097

RESUMO

Firefly luciferases, which emit visible light in a highly specific ATP-dependent process, have been adapted for a variety of applications, including gene reporter assays, whole-cell biosensor measurements, and in vivo imaging. We previously reported the approximately 2-fold enhanced activity and 1.4-fold greater bioluminescence quantum yield properties of a chimeric enzyme that contains the N-domain of Photinus pyralis luciferase joined to the C-domain of Luciola italica luciferase. Subsequently, we identified 5 amino acid changes based on L. italica that are the main determinants of the improved bioluminescence properties. Further engineering to enhance thermal and pH stability produced a novel luciferase called PLG2. We present here a systematic comparison of the spectral and physical properties of the new protein with P. pyralis luciferase and demonstrate the potential of PLG2 for use in assays based on the detection of femtomole levels of ATP. In addition, we compared the performance of a mammalian codon-optimized version of the cDNA for PLG2 with the luc2 gene in HEK293T cells. Using an optimized low-cost assay system, PLG2 activity can be monitored in mammalian cell lysates and living cells with 4.4-fold and approximately 3.0-fold greater sensitivity, respectively. PLG2 could be an improved alternative to Promega's luc2 for reporter and imaging applications.


Assuntos
Trifosfato de Adenosina/metabolismo , Genes Reporter/genética , Luciferases de Vaga-Lume/genética , Imagem Molecular/métodos , Proteínas Recombinantes de Fusão/genética , Animais , Estabilidade Enzimática , Vaga-Lumes/enzimologia , Células HEK293 , Humanos , Concentração de Íons de Hidrogênio , Medições Luminescentes , Engenharia de Proteínas , Temperatura
5.
Cell Cycle ; 13(1): 62-71, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24196439

RESUMO

Cyclin-dependent kinase 6 (Cdk6) is a D-Cyclin-activated kinase that is directly involved in driving the cell cycle through inactivation of pRB in G1 phase. Increasingly, evidence suggests that CDK6, while directly driving the cell cycle, may only be essential for proliferation of specialized cell types, agreeing with the notion that CDK6 also plays an important role in differentiation. Here, evidence is presented that CDK6 binds to and promotes degradation of the EYA2 protein. The EYA proteins are a family of proteins that activate genes essential for the development of multiple organs, regulate cell proliferation, and are misregulated in several types of cancer. This interaction suggests that CDK6 regulates EYA2 activity, a mechanism that could be important in development and in cancer.


Assuntos
Quinase 6 Dependente de Ciclina/metabolismo , Fase G1/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Tirosina Fosfatases/metabolismo , Proteólise , Ciclo Celular/genética , Diferenciação Celular/genética , Proliferação de Células , Quinase 6 Dependente de Ciclina/genética , Células HEK293 , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Neoplasias/genética , Proteínas Nucleares/genética , Proteínas Tirosina Fosfatases/genética
6.
Cell Cycle ; 8(17): 2837-43, 2009 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-19667758

RESUMO

Several studies have recently reported that the cyclin dependent kinase (cdk) 6 oncogene plays a role in differentiation of a variety of cell types. This novel function expands the previously understood function of cdk6 as a regulator of G(1) phase of the cell cycle. The proposed mechanisms of these functions both require nuclear localization. That is, cdk6 phosphorylation of the retinoblastoma protein (pRb) to regulate cell cycle, and the recently proposed transcriptional regulation to block differentiation, are both nuclear functions that predict nuclear localization of the kinase. This report provides a thorough analysis of cdk6 localization and compares the localization of a commonly used mutant cdk6 to the corrected wildtype sequence as recorded in GenBank. The widely shared mutant of cdk6 contains a tyrosine residue at amino acid 224 (instead of an aspartic acid) introducing a potential phosphorylation site to the cdk6 sequence. Results indicate a majority of cdk6 is localized to the cytoplasm with concentrations of cdk6 in the edges of the cytoplasm and in the cytoplasmic extensions of cells. The results of this study may help to better understand the emerging roles of cdk6 in cell cycle control, differentiation and cancer.


Assuntos
Quinase 6 Dependente de Ciclina/análise , Animais , Astrócitos/citologia , Sequência de Bases , Diferenciação Celular , Linhagem Celular , Quinase 6 Dependente de Ciclina/metabolismo , Fase G1 , Camundongos , Mutagênese Sítio-Dirigida , Células NIH 3T3 , Fosforilação , Proteínas Recombinantes de Fusão/análise , Proteínas Recombinantes de Fusão/metabolismo , Alinhamento de Sequência , Transfecção
7.
Proc Natl Acad Sci U S A ; 104(1): 139-44, 2007 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-17101977

RESUMO

Angiotensin II (Ang II) is a peptide hormone that, like many cytokines, acts as a proinflammatory agent and growth factor. After injury to the liver, the hormone assists in tissue repair by stimulating hepatocytes and hepatic stellate cells to synthesize extracellular matrix proteins and secrete secondary cytokines and by stimulating myofibroblasts to proliferate. However, under conditions of chronic liver injury, all of these effects conspire to promote pathologic liver fibrosis. Much of this effect of Ang II results from activation of the proinflammatory NF-kappaB transcription factor in response to stimulation of the type 1 Ang II receptor, a G protein-coupled receptor. Here, we characterize a previously undescribed signaling pathway mediating Ang II-dependent activation of NF-kappaB, which is composed of three principal proteins, CARMA3, Bcl10, and MALT1. Blocking the function of any of these proteins, through the use of either dominant-negative mutants, RNAi, or gene targeting, effectively abolishes Ang II-dependent NF-kappaB activation in hepatocytes. In addition, Bcl10(-/-) mice show defective hepatic cytokine production after Ang II treatment. Evidence also is presented that this pathway activates NF-kappaB through ubiquitination of IKKgamma, the regulatory subunit of the IkappaB kinase complex. These results elucidate a concrete series of molecular events that link ligand activation of the type 1 Ang II receptor to stimulation of the NF-kappaB transcription factor. These findings also uncover a function of the CARMA, Bcl10, and MALT1 proteins in cells outside the immune system.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/fisiologia , Angiotensina II/farmacologia , Proteínas Reguladoras de Apoptose/fisiologia , Proteínas Adaptadoras de Sinalização CARD/fisiologia , Caspases/fisiologia , Inflamação/etiologia , NF-kappa B/metabolismo , Proteínas de Neoplasias/fisiologia , Transdução de Sinais/fisiologia , Animais , Proteína 10 de Linfoma CCL de Células B , Hepatócitos/metabolismo , Humanos , Quinase I-kappa B/metabolismo , Camundongos , Proteína de Translocação 1 do Linfoma de Tecido Linfoide Associado à Mucosa , Receptor Tipo 1 de Angiotensina/fisiologia , Ubiquitina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA