RESUMO
DNA hypomethylating agents (HMAs) are used for the treatment of myeloid malignancies, although their therapeutic effects have been unsatisfactory. Here we show that CRISPR-Cas9 screening reveals that knockout of topoisomerase 1-binding arginine/serine-rich protein (TOPORS), which encodes a ubiquitin/SUMO E3 ligase, augments the efficacy of HMAs on myeloid leukemic cells with little effect on normal hematopoiesis, suggesting that TOPORS is involved in resistance to HMAs. HMAs are incorporated into the DNA and trap DNA methyltransferase-1 (DNMT1) to form DNA-DNMT1 crosslinks, which undergo SUMOylation, followed by proteasomal degradation. Persistent crosslinking is cytotoxic. The TOPORS RING finger domain, which mediates ubiquitination, is responsible for HMA resistance. In TOPORS knockout cells, DNMT1 is stabilized by HMA treatment due to inefficient ubiquitination, resulting in the accumulation of unresolved SUMOylated DNMT1. This indicates that TOPORS ubiquitinates SUMOylated DNMT1, thereby promoting the resolution of DNA-DNMT1 crosslinks. Consistently, the ubiquitination inhibitor, TAK-243, and the SUMOylation inhibitor, TAK-981, show synergistic effects with HMAs through DNMT1 stabilization. Our study provides a novel HMA-based therapeutic strategy that interferes with the resolution of DNA-DNMT1 crosslinks.
Assuntos
DNA (Citosina-5-)-Metiltransferase 1 , Metilação de DNA , Sumoilação , Ubiquitinação , DNA (Citosina-5-)-Metiltransferase 1/metabolismo , DNA (Citosina-5-)-Metiltransferase 1/antagonistas & inibidores , DNA (Citosina-5-)-Metiltransferase 1/genética , Humanos , Ubiquitinação/efeitos dos fármacos , Sumoilação/efeitos dos fármacos , Metilação de DNA/efeitos dos fármacos , Animais , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/genética , Linhagem Celular Tumoral , Camundongos , Sistemas CRISPR-Cas , Células HEK293RESUMO
Metabolic pathways are plastic and rapidly change in response to stress or perturbation. Current metabolic profiling techniques require lysis of many cells, complicating the tracking of metabolic changes over time after stress in rare cells such as hematopoietic stem cells (HSCs). Here, we aimed to identify the key metabolic enzymes that define differences in glycolytic metabolism between steady-state and stress conditions in murine HSCs and elucidate their regulatory mechanisms. Through quantitative 13C metabolic flux analysis of glucose metabolism using high-sensitivity glucose tracing and mathematical modeling, we found that HSCs activate the glycolytic rate-limiting enzyme phosphofructokinase (PFK) during proliferation and oxidative phosphorylation (OXPHOS) inhibition. Real-time measurement of ATP levels in single HSCs demonstrated that proliferative stress or OXPHOS inhibition led to accelerated glycolysis via increased activity of PFKFB3, the enzyme regulating an allosteric PFK activator, within seconds to meet ATP requirements. Furthermore, varying stresses differentially activated PFKFB3 via PRMT1-dependent methylation during proliferative stress and via AMPK-dependent phosphorylation during OXPHOS inhibition. Overexpression of Pfkfb3 induced HSC proliferation and promoted differentiated cell production, whereas inhibition or loss of Pfkfb3 suppressed them. This study reveals the flexible and multilayered regulation of HSC glycolytic metabolism to sustain hematopoiesis under stress and provides techniques to better understand the physiological metabolism of rare hematopoietic cells.
Assuntos
Glicólise , Fosfofrutoquinase-2 , Animais , Camundongos , Trifosfato de Adenosina/metabolismo , Anaerobiose , Hematopoese , Células-Tronco Hematopoéticas/metabolismo , Fosforilação Oxidativa , Fosfofrutoquinase-2/genética , Fosfofrutoquinase-2/metabolismo , Monoéster Fosfórico Hidrolases/metabolismoRESUMO
The Plasmodium life cycle involves differentiation into multiple morphologically distinct forms, a process regulated by developmental stage-specific gene expression. Histone proteins are involved in epigenetic regulation in eukaryotes, and the histone variant H3.3 plays a key role in the regulation of gene expression and maintenance of genomic integrity during embryonic development in mice. However, the function of H3.3 through multiple developmental stages in Plasmodium remains unknown. To examine the function of H3.3, h3.3-deficient mutants (Δh3.3) were generated in P. berghei. The deletion of h3.3 was not lethal in blood stage parasites, although it had a minor effect of the growth rate in blood stage; however, the in vitro ookinete conversion rate was significantly reduced, and the production of the degenerated form was increased. Regarding the mosquito stage development of Δh3.3, oocysts number was significantly reduced, and no sporozoite production was observed. The h3.3 gene complemented mutant have normal development in mosquito stage producing mature oocysts and salivary glands contained sporozoites, and interestingly, the majority of H3.3 protein was detected in female gametocytes. However, Δh3.3 male and female gametocyte production levels were comparable to the wild-type levels. Transcriptome analysis of Δh3.3 male and female gametocytes revealed the upregulation of several male-specific genes in female gametocytes, suggesting that H3.3 functions as a transcription repressor of male-specific genes to maintain sexual identity in female gametocytes. This study provides new insights into the molecular biology of histone variants H3.3 which plays a critical role on zygote-to-oocyst development in primitive unicellular eukaryotes.
Assuntos
Histonas , Malária , Parasitos , Plasmodium berghei , Plasmodium , Animais , Feminino , Masculino , Camundongos , Epigênese Genética , Histonas/genética , Malária/parasitologia , Oocistos , Plasmodium berghei/genética , Plasmodium berghei/fisiologia , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Esporozoítos/fisiologia , Zigoto/metabolismoRESUMO
Polycomb repressive complex (PRC) 1 regulates stem cell fate by mediating mono-ubiquitination of histone H2A at lysine 119. While canonical PRC1 is critical for hematopoietic stem and progenitor cell (HSPC) maintenance, the role of non-canonical PRC1 in hematopoiesis remains elusive. PRC1.1, a non-canonical PRC1, consists of PCGF1, RING1B, KDM2B, and BCOR. We recently showed that PRC1.1 insufficiency induced by the loss of PCGF1 or BCOR causes myeloid-biased hematopoiesis and promotes transformation of hematopoietic cells in mice. Here we show that PRC1.1 serves as an epigenetic switch that coordinates homeostatic and emergency hematopoiesis. PRC1.1 maintains balanced output of steady-state hematopoiesis by restricting C/EBPα-dependent precocious myeloid differentiation of HSPCs and the HOXA9- and ß-catenin-driven self-renewing network in myeloid progenitors. Upon regeneration, PRC1.1 is transiently inhibited to facilitate formation of granulocyte-macrophage progenitor (GMP) clusters, thereby promoting emergency myelopoiesis. Moreover, constitutive inactivation of PRC1.1 results in unchecked expansion of GMPs and eventual transformation. Collectively, our results define PRC1.1 as a novel critical regulator of emergency myelopoiesis, dysregulation of which leads to myeloid transformation.
Assuntos
Mielopoese , Complexo Repressor Polycomb 1 , Animais , Camundongos , Complexo Repressor Polycomb 1/metabolismo , Mielopoese/genética , Histonas , Diferenciação Celular/fisiologia , Células-Tronco Hematopoéticas/metabolismoRESUMO
UTX/KDM6A, a histone H3K27 demethylase and a key component of the COMPASS complex, is frequently lost or mutated in cancer; however, its tumor suppressor function remains largely uncharacterized in multiple myeloma (MM). Here, we show that the conditional deletion of the X-linked Utx in germinal center (GC) derived cells collaborates with the activating BrafV600E mutation and promotes induction of lethal GC/post-GC B cell malignancies with MM-like plasma cell neoplasms being the most frequent. Mice that developed MM-like neoplasms showed expansion of clonal plasma cells in the bone marrow and extramedullary organs, serum M proteins, and anemia. Add-back of either wild-type UTX or a series of mutants revealed that cIDR domain, that forms phase-separated liquid condensates, is largely responsible for the catalytic activity-independent tumor suppressor function of UTX in MM cells. Utx loss in concert with BrafV600E only slightly induced MM-like profiles of transcriptome, chromatin accessibility, and H3K27 acetylation, however, it allowed plasma cells to gradually undergo full transformation through activation of transcriptional networks specific to MM that induce high levels of Myc expression. Our results reveal a tumor suppressor function of UTX in MM and implicate its insufficiency in the transcriptional reprogramming of plasma cells in the pathogenesis of MM.
Assuntos
Mieloma Múltiplo , Animais , Camundongos , Linfócitos B/metabolismo , Genes Supressores de Tumor , Centro Germinativo/metabolismo , Histona Desmetilases/genética , Histona Desmetilases/metabolismo , Mieloma Múltiplo/genética , Proteínas Proto-Oncogênicas B-raf/genéticaRESUMO
Soft tissue sarcomas (STSs) are a heterogeneous group of tumors that originate from mesenchymal cells. p53 is frequently mutated in human STS. In this study, we found that the loss of p53 in mesenchymal stem cells (MSCs) mainly causes adult undifferentiated soft tissue sarcoma (USTS). MSCs lacking p53 show changes in stem cell properties, including differentiation, cell cycle progression, and metabolism. The transcriptomic changes and genetic mutations in murine p53-deficient USTS mimic those seen in human STS. Furthermore, single-cell RNA sequencing revealed that MSCs undergo transcriptomic alterations with aging-a risk factor for certain types of USTS-and that p53 signaling decreases simultaneously. Moreover, we found that human STS can be transcriptomically classified into six clusters with different prognoses, different from the current histopathological classification. This study paves the way for understanding MSC-mediated tumorigenesis and provides an efficient mouse model for sarcoma studies.
Assuntos
Células-Tronco Mesenquimais , Sarcoma , Adulto , Animais , Humanos , Camundongos , Carcinogênese/patologia , Transformação Celular Neoplásica/metabolismo , Células-Tronco Mesenquimais/metabolismo , Sarcoma/genética , Sarcoma/metabolismo , Sarcoma/patologia , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismoRESUMO
Dysfunctional anti-tumor immunity has been implicated in the pathogenesis of mature B cell neoplasms, such as multiple myeloma and B cell lymphoma; however, the impact of exhausted T cells on disease development remains unclear. Therefore, the present study investigated the features and pathogenetic significance of exhausted T cells using a mouse model of de novo mature B cell neoplasms, which is likely to show immune escape similar to human patients. The results revealed a significant increase in PD-1+ Tim-3- and PD-1+ Tim-3+ T cells in sick mice. Furthermore, PD-1+ Tim-3+ T cells exhibited direct cytotoxicity with a short lifespan, showing transcriptional similarities to terminally exhausted T cells. On the other hand, PD-1+ Tim-3- T cells not only exhibited immunological responsiveness but also retained stem-like transcriptional features, suggesting that they play a role in the long-term maintenance of anti-tumor immunity. In PD-1+ Tim-3- and PD-1+ Tim-3+ T cells, the transcription factors Tox and Nr4a2, which reportedly contribute to the progression of T cell exhaustion, were up-regulated in vivo. These transcription factors were down-regulated by IMiDs in our in vitro T cell exhaustion analyses. The prevention of excessive T cell exhaustion may maintain effective anti-tumor immunity to cure mature B cell neoplasms.
Assuntos
Linfoma de Células B , Mieloma Múltiplo , Animais , Humanos , Receptor Celular 2 do Vírus da Hepatite A , Linfócitos T CD8-Positivos , Receptor de Morte Celular Programada 1 , Modelos Animais de Doenças , Fatores de TranscriçãoRESUMO
We investigated the role of Hoip, a catalytic subunit of linear ubiquitin chain assembly complex (LUBAC), in adult hematopoiesis and myeloid leukemia by using both conditional deletion of Hoip and small-molecule chemical inhibitors of Hoip. Conditional deletion of Hoip led to significantly longer survival and marked depletion of leukemia burden in murine myeloid leukemia models. Nevertheless, a competitive transplantation assay showed the reduction of donor-derived cells in the bone marrow of recipient mice was relatively mild after conditional deletion of Hoip. Although both Hoip-deficient hematopoietic stem cells (HSCs) and leukemia stem cells (LSCs) impaired the maintenance of quiescence, conditional deletion of Hoipinduced apoptosis in LSCs but not HSCs in vivo. Structure-function analysis revealed that LUBAC ligase activity and the interaction of LUBAC subunits were critical for the propagation of leukemia. Hoip regulated oxidative phosphorylation pathway independently of nuclear factor kappa B pathway in leukemia, but not in normal hematopoietic cells. Finally, the administration of thiolutin, which inhibits the catalytic activity of Hoip, improved the survival of recipients in murine myeloid leukemia and suppressed propagation in the patient-derived xenograft model of myeloid leukemia. Collectively, these data indicate that inhibition of LUBAC activity may be a valid therapeutic target for myeloid leukemia.
Assuntos
Leucemia Mieloide , Ubiquitina-Proteína Ligases , Humanos , Animais , Camundongos , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação , NF-kappa B/metabolismo , ApoptoseRESUMO
Cancer cell heterogeneity is a major driver of therapy resistance. To characterize resistant cells and their vulnerabilities, we studied the PLZF-RARA variant of acute promyelocytic leukemia, resistant to retinoic acid (RA), using single-cell multiomics. We uncovered transcriptional and chromatin heterogeneity in leukemia cells. We identified a subset of cells resistant to RA with proliferation, DNA replication, and repair signatures that depend on a fine-tuned E2F transcriptional network targeting the epigenetic regulator enhancer of zeste homolog 2 (EZH2). Epigenomic and functional analyses validated the driver role of EZH2 in RA resistance. Targeting pan-EZH2 activities (canonical/noncanonical) was necessary to eliminate leukemia relapse-initiating cells, which underlies a dependency of resistant cells on an EZH2 noncanonical activity and the necessity to degrade EZH2 to overcome resistance. Our study provides critical insights into the mechanisms of RA resistance that allow us to eliminate treatment-resistant leukemia cells by targeting EZH2, thus highlighting a potential targeted therapy approach. Beyond RA resistance and acute promyelocytic leukemia context, our study also demonstrates the power of single-cell multiomics to identify, characterize, and clear therapy-resistant cells.
Assuntos
Leucemia Promielocítica Aguda , Humanos , Leucemia Promielocítica Aguda/tratamento farmacológico , Leucemia Promielocítica Aguda/genética , Leucemia Promielocítica Aguda/metabolismo , Tretinoína/farmacologia , Proteína Potenciadora do Homólogo 2 de Zeste/genética , Receptor alfa de Ácido Retinoico/genética , Receptores do Ácido Retinoico/genética , Fatores de Transcrição/genética , Proteínas Nucleares/genéticaRESUMO
Hematopoietic stem cells (HSCs) exhibit considerable cell-intrinsic changes with age. Here, we present an integrated analysis of transcriptome and chromatin accessibility of aged HSCs and downstream progenitors. Alterations in chromatin accessibility preferentially take place in HSCs with aging, which gradually resolve with differentiation. Differentially open accessible regions (open DARs) in aged HSCs are enriched for enhancers and show enrichment of binding motifs of the STAT, ATF, and CNC family transcription factors that are activated in response to external stresses. Genes linked to open DARs show significantly higher levels of basal expression and their expression reaches significantly higher peaks after cytokine stimulation in aged HSCs than in young HSCs, suggesting that open DARs contribute to augmented transcriptional responses under stress conditions. However, a short-term stress challenge that mimics infection is not sufficient to induce persistent chromatin accessibility changes in young HSCs. These results indicate that the ongoing and/or history of exposure to external stresses may be epigenetically inscribed in HSCs to augment their responses to external stimuli.
Assuntos
Cromatina , Células-Tronco Hematopoéticas , Diferenciação Celular/genética , Cromatina/genética , Cromatina/metabolismo , Epigênese Genética , Epigenômica , Células-Tronco Hematopoéticas/metabolismoRESUMO
The identification of characteristic differences between cancer stem cells and their normal counterparts remains a key challenge for cancer treatment. Here, we investigated the role of immunoglobulin superfamily member 8 (Igsf8, also known as EWI-2, PGRL, and CD316) on normal and malignant hematopoietic stem cells, mainly using the conditional knockout model. Deletion of Igsf8 did not affect steady state hematopoiesis, but it led to a significant improvement of survival in mouse myeloid leukemia models. Deletion of Igsf8 significantly depletes leukemia stem cells (LSCs) through enhanced apoptosis and ß-catenin degradation. At a molecular level, we found that activation of ß-catenin in LSCs depends on Igsf8, which promotes the association of FZD4 with its co-receptor LRP6 in the presence of Igsf8. Similarly, IGSF8 inhibition blocks the colony-forming ability of LSCs and improves the survival of recipients in xenograft models of myeloid leukemia. Collectively, these data indicate strong genetic evidence identifying Igsf8 as a key regulator of myeloid leukemia and the possibility that targeting IGSF8 may serve as a new therapeutic approach against myeloid leukemia.
Assuntos
Proteínas de Transporte/metabolismo , Leucemia Mieloide Aguda , Proteínas de Membrana/metabolismo , beta Catenina/metabolismo , Animais , Receptores Frizzled/metabolismo , Células-Tronco Hematopoéticas/metabolismo , Humanos , Imunoglobulinas , Leucemia Mieloide Aguda/metabolismo , Camundongos , Células-Tronco Neoplásicas/patologia , Fatores de Transcrição/metabolismo , beta Catenina/genéticaRESUMO
Isolation of long-term hematopoietic stem cell (HSC) is possible by utilizing flow cytometry with multiple cell surface markers. However, those cell surface phenotypes do not represent functional HSCs after in vitro culture. Here we show that cultured HSCs express mast cell-related genes including Cd244. After in vitro culture, phenotypic HSCs were divided into CD244- and CD244+ subpopulations, and only CD244- cells that have low mast cell gene expression and maintain HSC-related genes sustain reconstitution potential. The result was same when HSCs were cultured in an efficient expansion medium containing polyvinyl alcohol. Chemically induced endoplasmic reticulum (ER) stress signal increased the CD244+ subpopulation, whereas ER stress suppression using a molecular chaperone, TUDCA, decreased CD244+ population, which was correlated to improved reconstitution output. These data suggest CD244 is a potent marker to exclude non-functional HSCs after in vitro culture thereby useful to elucidate mechanism of functional decline of HSCs during ex vivo treatment.
RESUMO
Other than genetically engineered mice, few reliable platforms are available for the study of hematopoietic stem cell (HSC) quiescence. Here we present a platform to analyze HSC cell cycle quiescence by combining culture conditions that maintain quiescence with a CRISPR-Cas9 genome editing system optimized for HSCs. We demonstrate that preculture of HSCs enhances editing efficiency by facilitating nuclear transport of ribonucleoprotein complexes. For post-editing culture, mouse and human HSCs edited based on non-homologous end joining and cultured under low-cytokine, low-oxygen, and high-albumin conditions retain their phenotypes and quiescence better than those cultured under the proliferative conditions. Using this approach, HSCs regain quiescence even after editing by homology-directed repair. Our results show that low-cytokine culture conditions for gene-edited HSCs are a useful approach for investigating HSC quiescence ex vivo.
Assuntos
Edição de Genes , Células-Tronco Hematopoéticas , Animais , Camundongos , Humanos , Edição de Genes/métodos , Citocinas/metabolismoRESUMO
Insufficiency of polycomb repressive complex 2 (PRC2), which trimethylates histone H3 at lysine 27, is frequently found in primary myelofibrosis and promotes the development of JAK2V617F-induced myelofibrosis in mice by enhancing the production of dysplastic megakaryocytes. Polycomb group ring finger protein 1 (Pcgf1) is a component of PRC1.1, a non-canonical PRC1 that monoubiquitylates H2A at lysine 119 (H2AK119ub1). We herein investigated the impact of PRC1.1 insufficiency on myelofibrosis. The deletion of Pcgf1 in JAK2V617F mice strongly promoted the development of lethal myelofibrosis accompanied by a block in erythroid differentiation. Transcriptome and chromatin immunoprecipitation sequence analyses showed the de-repression of PRC1.1 target genes in Pcgf1-deficient JAK2V617F hematopoietic progenitors and revealed Hoxa cluster genes as direct targets. The deletion of Pcgf1 in JAK2V617F hematopoietic stem and progenitor cells (HSPCs), as well as the overexpression of Hoxa9, restored the attenuated proliferation of JAK2V617F progenitors. The overexpression of Hoxa9 also enhanced JAK2V617F-mediated myelofibrosis. The expression of PRC2 target genes identified in PRC2-insufficient JAK2V617F HSPCs was not largely altered in Pcgf1-deleted JAK2V617F HSPCs. The present results revealed a tumor suppressor function for PRC1.1 in myelofibrosis and suggest that PRC1.1 insufficiency has a different impact from that of PRC2 insufficiency on the pathogenesis of myelofibrosis.
Assuntos
Diferenciação Celular , Janus Quinase 2/genética , Mutação , Complexo Repressor Polycomb 1/fisiologia , Mielofibrose Primária/patologia , Animais , Feminino , Lisina , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mielofibrose Primária/etiologia , Mielofibrose Primária/metabolismo , UbiquitinaçãoRESUMO
Both EZH2 and its homolog EZH1 function as histone H3 Lysine 27 (H3K27) methyltransferases and repress the transcription of target genes. Dysregulation of H3K27 trimethylation (H3K27me3) plays an important role in the development and progression of cancers such as hepatocellular carcinoma (HCC). This study investigated the relationship between the expression of EZH1/2 and the level of H3K27me3 in HCC. Additionally, the role of EZH1/2 in cell growth, tumorigenicity, and resistance to sorafenib were also analyzed. Both the lentiviral knockdown and the pharmacological inhibition of EZH1/2 (UNC1999) diminished the level of H3K27me3 and suppressed cell growth in liver cancer cells, compared with EZH1 or EZH2 single knockdown. Although a significant association was observed between EZH2 expression and H3K27me3 levels in HCC samples, overexpression of EZH1 appeared to contribute to enhanced H3K27me3 levels in some EZH2lowH3K27me3high cases. Akt suppression following sorafenib treatment resulted in an increase of the H3K27me3 levels through a decrease in EZH2 phosphorylation at serine 21. The combined use of sorafenib and UNC1999 exhibited synergistic antitumor effects in vitro and in vivo. Combination treatment canceled the sorafenib-induced enhancement in H3K27me3 levels, indicating that activation of EZH2 function is one of the mechanisms of sorafenib-resistance in HCC. In conclusion, sorafenib plus EZH1/2 inhibitors may comprise a novel therapeutic approach in HCC.
Assuntos
Antineoplásicos/uso terapêutico , Benzamidas/uso terapêutico , Carcinoma Hepatocelular/terapia , Proteína Potenciadora do Homólogo 2 de Zeste/antagonistas & inibidores , Indazóis/uso terapêutico , Neoplasias Hepáticas/terapia , Piperazinas/uso terapêutico , Complexo Repressor Polycomb 2/antagonistas & inibidores , Piridonas/uso terapêutico , Sorafenibe/uso terapêutico , Idoso , Animais , Carcinoma Hepatocelular/genética , Linhagem Celular Tumoral , Regulação para Baixo/efeitos dos fármacos , Proteína Potenciadora do Homólogo 2 de Zeste/genética , Feminino , Terapia Genética , Humanos , Neoplasias Hepáticas/genética , Masculino , Camundongos SCID , Pessoa de Meia-Idade , Complexo Repressor Polycomb 2/genéticaRESUMO
Pulmonary hypertension (PH) is a progressive cardiopulmonary disease characterized by pulmonary arterial remodeling. Clonal somatic mutations including JAK2V617F, the most frequent driver mutation among myeloproliferative neoplasms, have recently been identified in healthy individuals without hematological disorders. Here, we reveal that clonal hematopoiesis with JAK2V617F exacerbates PH and pulmonary arterial remodeling in mice. JAK2V617F-expressing neutrophils specifically accumulate in pulmonary arterial regions, accompanied by increases in neutrophil-derived elastase activity and chemokines in chronic hypoxia-exposed JAK2V617F transgenic (JAK2V617F) mice, as well as recipient mice transplanted with JAK2V617F bone marrow cells. JAK2V617F progressively upregulates Acvrl1 (encoding ALK1) during the differentiation from bone marrow stem/progenitor cells peripherally into mature neutrophils of pulmonary arterial regions. JAK2V617F-mediated STAT3 phosphorylation upregulates ALK1-Smad1/5/8 signaling. ALK1/2 inhibition completely prevents the development of PH in JAK2V617F mice. Finally, our prospective clinical study identified JAK2V617F-positive clonal hematopoiesis is more common in PH patients than in healthy subjects. These findings indicate that clonal hematopoiesis with JAK2V617F causally leads to PH development associated with ALK1 upregulation.
Assuntos
Receptores de Activinas Tipo II/metabolismo , Hematopoiese Clonal/genética , Hipertensão Pulmonar/genética , Janus Quinase 2/genética , Pulmão/metabolismo , Neutrófilos/metabolismo , Receptores de Activinas Tipo II/genética , Animais , Células da Medula Óssea/citologia , Linhagem Celular Tumoral , Humanos , Hipertensão Pulmonar/metabolismo , Hipertensão Pulmonar/patologia , Hipóxia/metabolismo , Hipóxia/patologia , Janus Quinase 2/metabolismo , Pulmão/imunologia , Pulmão/patologia , Camundongos , Camundongos Transgênicos , Mutação , Transtornos Mieloproliferativos/genética , Transtornos Mieloproliferativos/patologia , Infiltração de Neutrófilos , Neutrófilos/imunologia , Fosforilação , Prevalência , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais , Proteínas Smad/metabolismo , Regulação para Cima , Remodelação VascularRESUMO
Human mesenchymal stem/stromal cells (hMSCs), when engrafted into immunodeficient mice, can form ectopic bone organs with hematopoietic stem cell (HSC) supportive functions. However, the ability to do so, through a cartilage intermediate, appears limited to 30% of donor bone marrow samples. In this study, we characterize the heterogeneous nature of hMSCs and their ability to efficiently form humanized ossicles observed in "good donors" to correlate with the frequency and functionality of chondrocyte progenitors. Flow cytometry of putative hMSC markers was enriched in the CD271+CD51+ stromal cell subset, which also possessed enhanced hMSC activity as assessed by single-cell colony-forming unit fibroblast (CFU-F) and undifferentiated mesensphere formation. Transcriptome analysis of CD271+ cells presented upregulation of chondrogenesis-/osteogenesis-related genes and HSC/niche maintenance factors such as C-X-C motif chemokine 12 (CXCL12) and ANGIOPOIETIN 1. Among the candidate genes selected to enrich for subsets with greater chondrogenic ability, cells negative for the actin cross-linker PALLADIN displayed the greatest CFU-F potential. Our study contributes to a better characterization of ossicle-forming hMSCs and their efficient isolation for the optimized engineering of human bone organs.
Assuntos
Células da Medula Óssea , Células-Tronco Mesenquimais , Adapaleno , Animais , Diferenciação Celular/genética , Condrogênese/genética , Proteínas do Citoesqueleto , Células-Tronco Hematopoéticas , Humanos , Células-Tronco Mesenquimais/fisiologia , Camundongos , Células EstromaisRESUMO
O-linked N-acetylglucosamine (O-GlcNAc) transferase (OGT) is a unique enzyme introducing O-GlcNAc moiety on target proteins, and it critically regulates various cellular processes in diverse cell types. However, its roles in hematopoietic stem and progenitor cells (HSPCs) remain elusive. Here, using Ogt conditional knockout mice, we show that OGT is essential for HSPCs. Ogt is highly expressed in HSPCs, and its disruption induces rapid loss of HSPCs with increased reactive oxygen species and apoptosis. In particular, Ogt-deficient hematopoietic stem cells (HSCs) lose quiescence, cannot be maintained in vivo, and become vulnerable to regenerative and competitive stress. Interestingly, Ogt-deficient HSCs accumulate defective mitochondria due to impaired mitophagy with decreased key mitophagy regulator, Pink1, through dysregulation of H3K4me3. Furthermore, overexpression of PINK1 restores mitophagy and the number of Ogt-deficient HSCs. Collectively, our results reveal that OGT critically regulates maintenance and stress response of HSCs by ensuring mitochondrial quality through PINK1-dependent mitophagy.