Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Epigenetics Chromatin ; 15(1): 29, 2022 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-35941657

RESUMO

BACKGROUND: Loss-of-function mutations of the multiple endocrine neoplasia type 1 (MEN1) gene are causal to the MEN1 tumor syndrome, but they are also commonly found in sporadic pancreatic neuroendocrine tumors and other types of cancers. The MEN1 gene product, menin, is involved in transcriptional and chromatin regulation, most prominently as an integral component of KMT2A/MLL1 and KMT2B/MLL2 containing COMPASS-like histone H3K4 methyltransferase complexes. In a mutually exclusive fashion, menin also interacts with the JunD subunit of the AP-1 and ATF/CREB transcription factors. RESULTS: Here, we applied and in silico screening approach for 253 disease-related MEN1 missense mutations in order to select a set of nine menin mutations in surface-exposed residues. The protein interactomes of these mutants were assessed by quantitative mass spectrometry, which indicated that seven of the nine mutants disrupt interactions with both MLL1/MLL2 and JunD complexes. Interestingly, we identified three missense mutations, R52G, E255K and E359K, which predominantly reduce the MLL1 and MLL2 interactions when compared with JunD. This observation was supported by a pronounced loss of binding of the R52G, E255K and E359K mutant proteins at unique MLL1 genomic binding sites with less effect on unique JunD sites. CONCLUSIONS: Our results underline the effects of MEN1 gene mutations in both familial and sporadic tumors of endocrine origin on the interactions of menin with the MLL1 and MLL2 histone H3K4 methyltransferase complexes and with JunD-containing transcription factors. Menin binding pocket mutants R52G, E255K and E359K have differential effects on MLL1/MLL2 and JunD interactions, which translate into differential genomic binding patterns. Our findings encourage future studies addressing the pathophysiological relevance of the separate MLL1/MLL2- and JunD-dependent functions of menin mutants in MEN1 disease model systems.


Assuntos
Neoplasia Endócrina Múltipla Tipo 1 , Proteínas Proto-Oncogênicas/genética , Histonas/metabolismo , Humanos , Neoplasia Endócrina Múltipla Tipo 1/genética , Neoplasia Endócrina Múltipla Tipo 1/metabolismo , Mutação de Sentido Incorreto , Proteínas Proto-Oncogênicas c-jun/genética , Proteínas Proto-Oncogênicas c-jun/metabolismo , Fatores de Transcrição/metabolismo , Virulência
2.
Curr Protoc ; 1(10): e266, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34644460

RESUMO

Genome-wide mapping of transcription factors and chromatin regulators is important to distinguish their direct from indirect effects on gene transcription or chromatin function. Novel approaches for studying their genomic localization under native conditions, such us cleavage under target and release using nuclease (CUT&RUN), offer higher resolution and lower sequencing costs than classical chromatin immunoprecipitation (ChIP) assays, and require fewer cells but they still depend on the availability of high-quality antibodies. Here, we describe detailed and robust protocols for greenCUT&RUN, which is a generic CUT&RUN-based approach for mapping the genome-wide localization of green fluorescent protein (GFP)-tagged factors in intact mammalian cells. The greenCUT&RUN method makes use of a micrococcal nuclease (MNase) coupled to a high affinity nanobody against GFP, which exploits the accessibility of multiple surfaces of the GFP tag, thus eliminating issues of antibody variability and availability. We also provide efficient protocols for the expression and purification of two different GFP nanobodies, which recognize non-overlapping GFP epitopes and can be combined for a further gain in sensitivity and accuracy. Compared to traditional CUT&RUN, genomic localization by greenCUT&RUN reduces handling time and experimental variability. GreenCUT&RUN is a versatile, robust, and universal procedure for surveying the genome-wide localization of GFP-tagged versions of proteins that drive key transcriptional programs and regulate chromatin function. © 2021 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol: Standard greenCUT&RUN for GFP-tagged proteins in mammalian cells Alternate Protocol: High-Ca++ /low-salt greenCUT&RUN for GFP-tagged histone proteins in mammalian cells Support Protocol: Expression and purification of GFP nanobody-MNase fusion proteins for greenCUT&RUN.


Assuntos
Cromatina , Fatores de Transcrição , Animais , Cromatina/genética , Imunoprecipitação da Cromatina , Genômica , Proteínas de Fluorescência Verde/genética
3.
Nucleic Acids Res ; 49(9): e49, 2021 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-33524153

RESUMO

Genome-wide localization of chromatin and transcription regulators can be detected by a variety of techniques. Here, we describe a novel method 'greenCUT&RUN' for genome-wide profiling of transcription regulators, which has a very high sensitivity, resolution, accuracy and reproducibility, whilst assuring specificity. Our strategy begins with tagging of the protein of interest with GFP and utilizes a GFP-specific nanobody fused to MNase to profile genome-wide binding events. By using a GFP-nanobody the greenCUT&RUN approach eliminates antibody dependency and variability. Robust genomic profiles were obtained with greenCUT&RUN, which are accurate and unbiased towards open chromatin. By integrating greenCUT&RUN with nanobody-based affinity purification mass spectrometry, 'piggy-back' DNA binding events can be identified on a genomic scale. The unique design of greenCUT&RUN grants target protein flexibility and yields high resolution footprints. In addition, greenCUT&RUN allows rapid profiling of mutants of chromatin and transcription proteins. In conclusion, greenCUT&RUN is a widely applicable and versatile genome-mapping technique.


Assuntos
Genômica/métodos , Proteômica/métodos , Fatores de Transcrição/metabolismo , Sítios de Ligação , Fator de Ligação a CCAAT/genética , Fator de Ligação a CCAAT/metabolismo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/imunologia , Células HeLa , Humanos , Espectrometria de Massas , Proteínas Proto-Oncogênicas c-fos/genética , Proteínas Proto-Oncogênicas c-fos/metabolismo , Proteínas Recombinantes de Fusão/análise , Anticorpos de Domínio Único , Proteína de Ligação a TATA-Box/genética , Proteína de Ligação a TATA-Box/metabolismo
4.
Int J Biochem Cell Biol ; 79: 478-487, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27343429

RESUMO

The small ubiquitin related modifier SUMO regulates protein functions to maintain cell homeostasis. SUMO attachment is executed by the hierarchical action of E1, E2 and E3 enzymes of which E3 ligases ensure substrate specificity. We recently identified the ZNF451 family as novel class of SUMO2/3 specific E3 ligases and characterized their function in SUMO chain formation. The founding member, ZNF451isoform1 (ZNF451-1) partially resides in PML bodies, nuclear structures organized by the promyelocytic leukemia gene product PML. As PML and diverse PML components are well known SUMO substrates the question arises whether ZNF451-1 is involved in their sumoylation. Here, we show that ZNF451-1 indeed functions as SUMO2/3 specific E3 ligase for PML and selected PML components in vitro. Mutational analysis indicates that substrate sumoylation employs an identical biochemical mechanism as we described for SUMO chain formation. In vivo, ZNF451-1 RNAi depletion leads to PML stabilization and an increased number of PML bodies. By contrast, PML degradation upon arsenic trioxide treatment is not ZNF451-1 dependent. Our data suggest a regulatory role of ZNF451-1 in fine-tuning physiological PML levels in a RNF4 cooperative manner in the mouse neuroblastoma N2a cell-line.


Assuntos
Núcleo Celular/metabolismo , Proteína da Leucemia Promielocítica/metabolismo , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/metabolismo , Fatores de Transcrição/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinas/metabolismo , Sequência de Aminoácidos , Aminoaciltransferases , Animais , Linhagem Celular Tumoral , Técnicas de Silenciamento de Genes , Células HEK293 , Humanos , Camundongos , Especificidade por Substrato , Fatores de Transcrição/química , Fatores de Transcrição/deficiência , Fatores de Transcrição/genética , Enzimas de Conjugação de Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases/química , Ubiquitina-Proteína Ligases/deficiência , Ubiquitina-Proteína Ligases/genética , Dedos de Zinco
5.
Nat Struct Mol Biol ; 22(12): 959-67, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26524493

RESUMO

SUMO chains act as stress-induced degradation tags or repair factor-recruiting signals at DNA lesions. Although E1 activating, E2 conjugating and E3 ligating enzymes efficiently assemble SUMO chains, specific chain-elongation mechanisms are unknown. E4 elongases are specialized E3 ligases that extend a chain but are inefficient in the initial conjugation of the modifier. We identified ZNF451, a representative member of a new class of SUMO2 and SUMO3 (SUMO2/3)-specific enzymes that execute catalysis via a tandem SUMO-interaction motif (SIM) region. One SIM positions the donor SUMO while a second SIM binds SUMO on the back side of the E2 enzyme. This tandem-SIM region is sufficient to extend a back side-anchored SUMO chain (E4 elongase activity), whereas efficient chain initiation also requires a zinc-finger region to recruit the initial acceptor SUMO (E3 ligase activity). Finally, we describe four human proteins sharing E4 elongase activities and their function in stress-induced SUMO2/3 conjugation.


Assuntos
Multimerização Proteica , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/metabolismo , Animais , Humanos , Vertebrados
6.
Mol Cell ; 50(5): 625-36, 2013 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-23644018

RESUMO

Posttranslational modification with the small ubiquitin-related modifier SUMO depends on the sequential activities of E1, E2, and E3 enzymes. While regulation by E3 ligases and SUMO proteases is well understood, current knowledge of E2 regulation is very limited. Here, we describe modification of the budding yeast E2 enzyme Ubc9 by sumoylation (Ubc9(*)SUMO). Although less than 1% of Ubc9 is sumoylated at Lys153 at steady state, a sumoylation-deficient mutant showed significantly reduced meiotic SUMO conjugates and abrogates synaptonemal complex formation. Biochemical analysis revealed that Ubc9(*)SUMO is severely impaired in its classical activity but promoted SUMO chain assembly in the presence of Ubc9. Ubc9(*)SUMO cooperates with charged Ubc9 (Ubc9~SUMO) by noncovalent backside SUMO binding and by positioning the donor SUMO for optimal transfer. Thus, sumoylation of Ubc9 converts an active enzyme into a cofactor and reveals a mechanism for E2 regulation that orchestrates catalytic (Ubc9~SUMO) and noncatalytic (Ubc9(*)SUMO) functions of Ubc9.


Assuntos
Saccharomyces cerevisiae/metabolismo , Enzimas de Conjugação de Ubiquitina/metabolismo , Lisina/metabolismo , Meiose , Mutação , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Sumoilação , Complexo Sinaptonêmico/metabolismo , Enzimas de Conjugação de Ubiquitina/genética
7.
Nat Cell Biol ; 12(6): 611-7, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20453847

RESUMO

In many instances during development, morphogens specify cell fates by forming concentration gradients. In the Drosophila melanogaster wing imaginal disc, Decapentaplegic (Dpp), a bone morphogenetic protein (BMP), functions as a long-range morphogen to control patterning and growth. Dpp is secreted from a stripe of cells at the anterior-posterior compartment boundary and spreads into both compartments to generate a characteristic BMP activity gradient. Ever since the identification of the morphogen activity of Dpp in the developing wing, the system has served as a paradigm to understand how long-range gradients are established and how cells respond to such gradients. Here we reveal the tight and direct connection of these two processes with the identification and characterization of pentagone (pent), a transcriptional target of BMP signalling encoding a secreted regulator of the pathway. Absence of pent in the wing disc causes a severe contraction of the BMP activity gradient resulting in patterning and growth defects. We show that Pent interacts with the glypican Dally to control Dpp distribution and provide evidence that proper establishment of the BMP morphogen gradient requires the inbuilt feedback loop embodied by Pent.


Assuntos
Proteínas Morfogenéticas Ósseas/genética , Proteínas Morfogenéticas Ósseas/metabolismo , Retroalimentação , Morfogênese/genética , Transdução de Sinais/genética , Animais , Drosophila melanogaster/genética , Drosophila melanogaster/crescimento & desenvolvimento , Drosophila melanogaster/metabolismo , Asas de Animais/crescimento & desenvolvimento , Asas de Animais/metabolismo
8.
Am J Pathol ; 168(3): 1045-53, 2006 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-16507917

RESUMO

The mechanisms of lymphangiogenesis have been increasingly understood in recent years. Yet, the contribution of lymphangiogenesis versus lymphatic cooption in human tumors and the functionality of tumor lymphatics are still controversial. Furthermore, despite the identification of lymphatic endothelial cell (LEC) markers such as Prox1, podoplanin, LYVE-1, and VEGFR-3, no activation marker for tumor-associated LECs has been identified. Applying double-staining techniques with established LEC markers, we have screened endothelial cell differentiation antigens for their expression in LECs. These experiments identified the sialomucin CD34 as being exclusively expressed by LECs in human tumors but not in corresponding normal tissues. CD34 is expressed by LYVE-1(+)/podoplanin(+)/Prox1(+) tumor-associated LECs in colon, breast, lung, and skin tumors. More than 60% of analyzed tumors contained detectable intratumoral lymphatics. Of these, more than 80% showed complete co-localization of CD34 with LEC markers. In contrast, LECs in all analyzed normal organs did not express CD34. Corresponding analyses of experimental tumors revealed that mouse tumor-associated LECs do not express CD34. Taken together, these experiments identify CD34 as the first differentially expressed LEC antigen that is selectively expressed by tumor-associated LECs. The data warrant further exploration of CD34 in tumor-associated LECs as a prognostic tumor marker.


Assuntos
Antígenos CD34/análise , Biomarcadores Tumorais/análise , Endotélio Linfático/química , Neoplasias/diagnóstico , Sialomucinas/análise , Células Endoteliais/química , Células Endoteliais/patologia , Endotélio Linfático/citologia , Humanos , Neoplasias/imunologia , Neoplasias/patologia
9.
Nat Med ; 12(2): 235-9, 2006 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-16462802

RESUMO

The angiopoietins Ang-1 and Ang-2 have been identified as ligands of the receptor tyrosine kinase Tie-2 (refs. 1,2). Paracrine Ang-1-mediated activation of Tie-2 acts as a regulator of vessel maturation and vascular quiescence. In turn, the antagonistic ligand Ang-2 acts by an autocrine mechanism and is stored in endothelial Weibel-Palade bodies from where it can be rapidly released upon stimulation. The rapid release of Ang-2 implies functions of the angiopoietin-Tie system beyond its established role during vascular morphogenesis as a regulator of rapid vascular responses. Here we show that mice deficient in Ang-2 (encoded by the gene Angpt2) cannot elicit an inflammatory response in thioglycollate-induced or Staphylococcus aureus-induced peritonitis, or in the dorsal skinfold chamber model. Recombinant Ang-2 restores the inflammation defect in Angpt2(-/-) mice. Intravital microscopy showed normal TNF-alpha-induced leukocyte rolling in the vasculature of Angpt2(-/-)mice, but rolling cells did not firmly adhere to activated endothelium. Cellular experiments showed that Ang-2 promotes adhesion by sensitizing endothelial cells toward TNF-alpha and modulating TNF-alpha-induced expression of endothelial cell adhesion molecules. Together, these findings identify Ang-2 as an autocrine regulator of endothelial cell inflammatory responses. Ang-2 thereby acts as a switch of vascular responsiveness exerting a permissive role for the activities of proinflammatory cytokines.


Assuntos
Angiopoietina-2/fisiologia , Inflamação/etiologia , Fator de Necrose Tumoral alfa/fisiologia , Angiopoietina-1/fisiologia , Angiopoietina-2/deficiência , Angiopoietina-2/genética , Animais , Citocinas/fisiologia , Endotélio Vascular/patologia , Endotélio Vascular/fisiopatologia , Humanos , Inflamação/patologia , Inflamação/fisiopatologia , Mediadores da Inflamação/fisiologia , Camundongos , Camundongos Knockout , Modelos Biológicos , Neovascularização Patológica , Transdução de Sinais
10.
Arterioscler Thromb Vasc Biol ; 24(10): 1803-9, 2004 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-15284088

RESUMO

OBJECTIVE: Angiopoietin-2 (Ang-2) is a non-signal transducing ligand of the endothelial receptor tyrosine kinase Tie-2. Ang-2 is produced by endothelial cells and acts as an autocrine regulator mediating vascular destabilization by inhibiting Angiopoietin-1-mediated Tie-2 activation. To examine the transcriptional regulation of Ang-2, we studied the Ang-2 promoter in endothelial cells and nonendothelial cells. METHODS AND RESULTS: The human Ang-2 promoter contains a 585-bp region around the transcriptional start site (-109 to +476) that is sufficient to control endothelial cell-specific and cytokine-dependent Ang-2 expression. Strong repressor elements of Ang-2-promoter activity are located in the 5'-region of the promoter and in the first intron. The Ets family transcription factors Ets-1 and Elf-1 act as strong enhancers of endothelial cell Ang-2-promoter activity. Ets-binding sites -4 and -7 act as positive regulators, whereas Ets-binding site -3 acts as negative regulator. Demethylation experiments revealed that the Ang-2 gene (in contrast to the Tie-2 gene) is not controlled by imprinting. CONCLUSIONS: The data determine unique positive and negative regulatory mechanisms of endothelial cell Ang-2 expression and provide further evidence for the critical role of Ang-2 as a key autocrine regulator of vascular stability and responsiveness.


Assuntos
Angiopoietina-2/biossíntese , Células Endoteliais/química , Células Endoteliais/metabolismo , Regiões Promotoras Genéticas/fisiologia , Região 5'-Flanqueadora/genética , Angiopoietina-2/genética , Animais , Aorta/citologia , Sequência de Bases/genética , Bovinos , Linhagem Celular , Linhagem Celular Tumoral , Clonagem Molecular/métodos , Citocinas/fisiologia , DNA/genética , Proteínas de Ligação a DNA/fisiologia , Endotélio Vascular/química , Endotélio Vascular/metabolismo , Impressão Genômica/genética , Humanos , Rim/química , Rim/embriologia , Rim/metabolismo , Camundongos , Dados de Sequência Molecular , Proteínas Nucleares , Proteína Proto-Oncogênica c-ets-1 , Proteínas Proto-Oncogênicas/fisiologia , Proteínas Proto-Oncogênicas c-ets , Fatores de Transcrição/fisiologia , Sítio de Iniciação de Transcrição
11.
Blood ; 103(11): 4150-6, 2004 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-14976056

RESUMO

The angiopoietins Ang-1 and Ang-2 have been identified as ligands with opposing functions of the receptor tyrosine kinase Tie-2 regulating endothelial cell survival and vascular maturation. Ang-1 acts in a paracrine agonistic manner, whereas Ang-2 appears to act primarily as an autocrine antagonistic regulator. To shed further light on the complexity of autocrine/paracrine agonistic/antagonistic functions of the angiopoietin/Tie-2 system, we have studied Ang-2 synthesis and secretion in different populations of wild-type and retrovirally Ang-2-transduced endothelial cells. Endogenous and overexpressed endothelial cell Ang-2 is expressed in a characteristic granular pattern indicative of a cytoplasmic storage granule. Light and electron microscopic double staining revealed Ang-2 colocalization with von Willebrand factor, identifying Ang-2 as a Weibel-Palade body molecule. Costaining with P-selectin showed that storage of Ang-2 and P-selectin in Weibel-Palade bodies is mutually exclusive. Stored Ang-2 has a long half-life of more than 18 hours and can be secreted within minutes of stimulation (eg, by phorbol 12-myristate 13-acetate [PMA], thrombin, and histamine). Collectively, the identification of Ang-2 as a stored, rapidly available molecule in endothelial cells strongly suggests functions of the angiopoietin/Tie-2 system beyond the established roles during angiogenesis likely to be involved in rapid vascular homeostatic reactions such as inflammation and coagulation.


Assuntos
Angiopoietina-2/metabolismo , Endotélio Vascular/metabolismo , Receptor TIE-2/metabolismo , Corpos de Weibel-Palade/metabolismo , Angiopoietina-2/genética , Carcinógenos/farmacologia , Células Cultivadas , Endotélio Vascular/citologia , Endotélio Vascular/efeitos dos fármacos , Expressão Gênica , Humanos , Ligantes , Músculo Liso Vascular/citologia , Selectina-P/metabolismo , Acetato de Tetradecanoilforbol/farmacologia , Artérias Umbilicais/citologia , Veias Umbilicais/citologia
12.
J Biol Chem ; 278(3): 1721-7, 2003 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-12427764

RESUMO

Angiopoietin-1 (Ang-1) and angiopoietin-2 (Ang-2) have been identified as ligands with different effector functions of the vascular assembly and maturation-mediating receptor tyrosine kinase Tie-2. To understand the molecular interactions of the angiopoietins with their receptor, we have studied the binding of Ang-1 and Ang-2 to the Tie-2 receptor. Enzyme-linked immunosorbent assay-based competition assays and co-immunoprecipitation experiments analyzing the binding of Ang-1 and Ang-2 to truncation mutants of the extracellular domain of Tie-2 showed that the first Ig-like loop of Tie-2 in combination with the epidermal growth factor (EGF)-like repeats (amino acids 1-360) is required for angiopoietin binding. The first Ig-like domain or the EGF-like repeats alone are not capable of binding Ang-1 and Ang-2. Concomitantly, we made the surprising finding that Tie-2 exon-2 knockout mice do express a mutated Tie-2 protein that lacks 104 amino acids of the first Ig-like domain. This mutant Tie-2 receptor is functionally inactive as shown by the lack of ligand binding and receptor phosphorylation. Collectively, the data show that the first 104 amino acids of the Tie-2 receptor are essential but not sufficient for angiopoietin binding. Conversely, the first 360 amino acids (Ig-like domain plus EGF-like repeats) of the Tie-2 receptor are necessary and sufficient to bind both Ang-1 and Ang-2, which suggests that differential receptor binding is not likely to be responsible for the different functions of Ang-1 and Ang-2.


Assuntos
Indutores da Angiogênese/metabolismo , Fator de Crescimento Epidérmico/metabolismo , Imunoglobulinas/metabolismo , Glicoproteínas de Membrana/metabolismo , Proteínas de Neoplasias/metabolismo , Proteínas Proto-Oncogênicas , Indutores da Angiogênese/isolamento & purificação , Angiopoietina-1 , Angiopoietina-2 , Animais , Sequência de Bases , Sítios de Ligação , Linhagem Celular Transformada , Primers do DNA , Ensaio de Imunoadsorção Enzimática , Fator de Crescimento Epidérmico/química , Glicoproteínas de Membrana/isolamento & purificação , Camundongos , Proteínas de Neoplasias/química , Proteínas de Neoplasias/genética , Testes de Precipitina , Receptor TIE-2 , Reação em Cadeia da Polimerase Via Transcriptase Reversa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA