Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 26(12): 9226-9233, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38444319

RESUMO

The reaction of carbon dioxide on the vicinal Cu surfaces at low temperatures was investigated by infrared reflection absorption spectroscopy, scanning tunneling microscopy, X-ray photoelectron spectroscopy, and quadrupole mass spectrometry. Dissociation of CO2 molecules into CO on the Cu(997) and Cu(977) surfaces was observed at temperatures between 80 K and 90 K, whereas it did not occur on Cu(111) under a similar condition. CO and physisorbed CO2 were the main adsorbates during the reaction. In contrast, the amount of atomic oxygen on the surface was small. The dissociation of CO2 was promoted by the small amount of oxygen produced by the CO2 dissociation on the Cu surfaces. This leads to the induction period in the CO2 reaction; the initial reaction rate on the clean Cu surfaces was low, and the coadsorbed oxygen enhanced the dissociation reactivity of CO2. Mass analysis of desorption species during the reaction revealed that the observed CO formation on the vicinal Cu surface is mainly caused by an oxygen-exchange reaction with residual CO in an ultra-high vacuum chamber.

2.
Nano Lett ; 24(3): 836-843, 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38193723

RESUMO

Tip-enhanced vibrational spectroscopy has advanced to routinely attain nanoscale spatial resolution, with tip-enhanced Raman spectroscopy even achieving atomic-scale and submolecular sensitivity. Tip-enhanced infrared spectroscopy techniques, such as nano-FTIR and AFM-IR spectroscopy, have also enabled the nanoscale chemical analysis of molecular monolayers, inorganic nanoparticles, and protein complexes. However, fundamental limits of infrared nanospectroscopy in terms of spatial resolution and sensitivity have remained elusive, calling for a quantitative understanding of the near-field interactions in infrared nanocavities. Here, we demonstrate the application of nano-FTIR spectroscopy to probe the amide-I vibration of a single protein consisting of ∼500 amino acid residues. Detection with higher tip tapping demodulation harmonics up to the seventh order leads to pronounced enhancement in the peak amplitude of the vibrational resonance, originating from sub-tip-radius geometrical effects beyond dipole approximations. This quantitative characterization of single-nanometer near-field interactions opens the path toward employing infrared vibrational spectroscopy at the subnanoscale and single-molecule levels.


Assuntos
Rádio (Anatomia) , Vibração , Microscopia de Força Atômica , Nanotecnologia/métodos , Espectroscopia de Infravermelho com Transformada de Fourier
3.
Chemistry ; 30(7): e202303073, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38018466

RESUMO

A non-solvated alkyl-substituted Al(I) anion dimer was synthesized by a reduction of haloalumane precursor using a mechanochemical method. The crystallographic and theoretical analysis revealed its structure and electronic properties. Experimental XPS analysis of the Al(I) anions with reference compounds revealed the lower Al 2p binding energy corresponds to the lower oxidation state of Al species. It should be emphasized that the experimentally obtained XPS binding energies were reproduced by delta SCF calculations and were linearly correlated with NPA charges and 2p orbital energies.

4.
Chemphyschem ; 24(22): e202300477, 2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-37632303

RESUMO

Sulfur vacancy on an MoS2 basal plane plays a crucial role in device performance and catalytic activity; thus, an understanding of the electronic states of sulfur vacancies is still an important issue. We investigate the electronic states on an MoS2 basal plane by ambient-pressure X-ray photoelectron spectroscopy (AP-XPS) and density functional theory calculations while heating the system in hydrogen. The AP-XPS results show a decrease in the intensity ratio of S 2p to Mo 3d, indicating that sulfur vacancies are formed. Furthermore, low-energy components are observed in Mo 3d and S 2p spectra. To understand the changes in the electronic states induced by sulfur vacancy formation at the atomic scale, we calculate the core-level binding energies for the model vacancy surfaces. The calculated shifts for Mo 3d and S 2p with the formation of sulfur vacancy are consistent with the experimentally observed binding energy shifts. Mulliken charge analysis indicates that this is caused by an increase in the electronic density associated with the Mo and S atoms around the sulfur vacancy as compared to the pristine surface. The present investigation provides a guideline for sulfur vacancy engineering.

5.
JACS Au ; 3(3): 823-833, 2023 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-37006766

RESUMO

Numerous biomimetic molecular catalysts inspired by methane monooxygenases (MMOs) that utilize iron or copper-oxo species as key intermediates have been developed. However, the catalytic methane oxidation activities of biomimetic molecule-based catalysts are still much lower than those of MMOs. Herein, we report that the close stacking of a µ-nitrido-bridged iron phthalocyanine dimer onto a graphite surface is effective in achieving high catalytic methane oxidation activity. The activity is almost 50 times higher than that of other potent molecule-based methane oxidation catalysts and comparable to those of certain MMOs, in an aqueous solution containing H2O2. It was demonstrated that the graphite-supported µ-nitrido-bridged iron phthalocyanine dimer oxidized methane, even at room temperature. Electrochemical investigation and density functional theory calculations suggested that the stacking of the catalyst onto graphite induced partial charge transfer from the reactive oxo species of the µ-nitrido-bridged iron phthalocyanine dimer and significantly lowered the singly occupied molecular orbital level, thereby facilitating electron transfer from methane to the catalyst in the proton-coupled electron-transfer process. The cofacially stacked structure is advantageous for stable adhesion of the catalyst molecule on the graphite surface in the oxidative reaction condition and for preventing decreases in the oxo-basicity and generation rate of the terminal iron-oxo species. We also demonstrated that the graphite-supported catalyst exhibited appreciably enhanced activity under photoirradiation owing to the photothermal effect.

6.
Chemistry ; 29(38): e202300881, 2023 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-37096647

RESUMO

Nanoparticles exhibiting enzymatic functions have garnered considerable attention due to their structural robustness and the profusion of active sites that can be introduced to a single nanosized particle. Here we report that nanosized mixed-metal zeolitic imidazolate frameworks (ZIFs) show a superoxide dismutase (SOD)-like catalytic activity. We chose a ZIF composed of copper and zinc ions and 2-methylimidazole, CuZn-ZIF-8, in which the Cu and Zn ions are bridged by an imidazolato ligand. This coordination geometry closely mimics the active site of CuZn superoxide dismutase (CuZnSOD). The CuZn-ZIF-8 nanoparticles exhibit potent SOD-like activity, attributed to their porous nature and numerous copper active sites, and also possess exceptional recyclability.


Assuntos
Nanopartículas , Zeolitas , Cobre/química , Zeolitas/química , Biomimética , Superóxido Dismutase/química
7.
Nanoscale ; 15(16): 7272-7279, 2023 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-36987742

RESUMO

We recently found that [Pt17(CO)12(PPh3)8]z (Pt = platinum; CO = carbon monoxide; PPh3 = triphenylphosphine; z = 1+ or 2+) is a Pt nanocluster (Pt NC) that can be synthesized with atomic precision in air. The present study demonstrates that it is possible to prepare a Pt17-supported carbon black (CB) catalyst (Pt17/CB) with 2.1 times higher oxygen reduction reaction (ORR) activity than commercial Pt nanoparticles/CB by the adsorption of [Pt17(CO)12(PPh3)8]z onto CB and subsequent calcination of the catalyst. Density functional theory calculation strongly suggests that the high ORR activity of Pt17/CB originates from the surface Pt atoms that have an electronic structure appropriate for the progress of ORR. These results are expected to provide design guidelines for the fabrication of highly active ORR catalysts using Pt NCs with a diameter of about 1 nm and thereby enabling the use of reduced amounts of Pt in polymer electrolyte fuel cells.

8.
J Am Chem Soc ; 145(3): 1497-1504, 2023 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-36511728

RESUMO

A coordination-induced trigger for catalytic activity is proposed on an N-heterocyclic carbene (NHC)-decorated ceria catalyst incorporating Cr and Rh (ICy-r-Cr0.19Rh0.06CeOz). ICy-r-Cr0.19Rh0.06CeOz was prepared by grafting 1,3-dicyclohexylimidazol-2-ylidene (ICy) onto H2-reduced Cr0.19Rh0.06CeOz (r-Cr0.19Rh0.06CeOz) surfaces, which went on to exhibit substantial catalytic activity for the 1,4-arylation of cyclohexenone with phenylboronic acid, whereas r-Cr0.19Rh0.06CeOz without ICy was inactive. FT-IR, Rh K-edge XAFS, XPS, and photoluminescence spectroscopy showed that the ICy carbene-coordinated Rh nanoclusters were the key active species. The coordination-induced trigger for catalytic activity on the ICy-bearing Rh nanoclusters could not be attributed to electronic donation from ICy to the Rh nanoclusters. DFT calculations suggested that ICy controlled the adsorption sites of the phenyl group on the Rh nanocluster to promote the C-C bond formation of the phenyl group and cyclohexenone.

9.
J Chem Phys ; 152(4): 044703, 2020 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-32007070

RESUMO

The adsorption, desorption, and decomposition of formic acid (HCOOH) on Cu(111), Cu(997), Zn-Cu(111), and Zn-Cu(997) were systematically studied by high-resolution x-ray photoelectron spectroscopy, temperature programmed desorption, and infrared reflection absorption spectroscopy. On the clean Cu(111) surface, 13% of formic acid molecules adsorbed at 83 K were dissociated to form bidentate formate species by heating at 300 K; however, on the Zn-Cu(111) surface, only 4% of adsorbed HCOOH molecules were dissociated into the bidentate formate species. On the contrary, 13% of adsorbed HCOOH molecules were already dissociated into monodentate formate species on Cu(997) even at 83 K and 17% of adsorbed formic acid molecules were transformed to bidentate formate species by heating at 300 K, indicating that the stepped Cu surface has higher reactivity for HCOOH dissociation at low temperature. On the Zn-Cu(997) surface, 20% of formic acid became bidentate formate species in contrast to the case with Zn-Cu(111). Thus, the Zn deposited Cu step surface shows special activity for adsorption and dissociation of formic acid. The desorption peak maxima of the formate decomposition products (CO2 and H2) on Zn-Cu(997) were shifted to higher temperatures than those on Cu(997). Zn on Cu surfaces plays an important role in the stabilization of formate species, which probably leads to the decrease in the activation barrier for hydrogenation on the Zn-Cu alloyed surface.

10.
J Chem Phys ; 153(6): 064702, 2020 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-35287437

RESUMO

We have investigated the adsorption and thermal reaction processes of NO with silicene spontaneously formed on the ZrB2/Si(111) substrate using synchrotron radiation x-ray photoelectron spectroscopy (XPS) and density-functional theory calculations. NO is dissociatively adsorbed on the silicene surface at 300 K. An atomic nitrogen is bonded to three Si atoms most probably by a substitutional adsorption with a Si atom of silicene (N≡Si3). An atomic oxygen is inserted between two Si atoms of the silicene (Si-O-Si). With increasing NO exposure, the two-dimensional honeycomb silicene structure gets destroyed, judging from the decay of typical Si 2p spectra for silicene. After a large amount of NO exposure, the oxidation state of Si becomes Si4+ predominantly, and the intensity of the XPS peaks of the ZrB2 substrate decreases, indicating that complicated silicon oxinitride species have developed three-dimensionally. By heating above 900 K, the oxide species start to desorb from the surface, but nitrogen-bonded species still exist. After flashing at 1053 K, no oxygen species is observed on the surface; SiN species are temporally formed as a metastable species and BN species also start to develop. In addition, the silicene structure is restored on the ZrB2/Si(111) substrate. After prolonged heating at 1053 K, most of nitrogen atoms are bonded to B atoms to form a BN layer at the topmost surface. Thus, BN-covered silicene is formed on the ZrB2/Si(111) substrate by the adsorption of NO at 300 K and prolonged heating at 1053 K.

11.
Phys Chem Chem Phys ; 21(37): 20868-20877, 2019 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-31517357

RESUMO

The ceria-based catalyst incorporated with Cr and a trace amount of Rh (Cr0.19Rh0.06CeOz) was prepared and the reversible redox performances and oxidation catalysis of CO and alcohol derivatives with O2 at low temperatures (<373 K) were investigated. In situ X-ray absorption fine structure (XAFS), ambient-pressure X-ray photoelectron spectroscopy (AP-XPS), high angle annular dark-field scanning transmission electron microscopy (HAADF-STEM)-EDS/EELS and temperature-programmed reduction/oxidation (TPR/TPO) revealed the structures and redox mechanisms of three metals in Cr0.19Rh0.06CeOz: dispersed Rh3+δ species (<1 nm) and Cr6-γO3-x nanoparticles (∼1 nm) supported on CeO2 in Cr0.19Rh0.06CeOz were transformed to Rh nanoclusters, Cr(OH)3 species and CeO2-x with two Ce3+-oxide layers at the surface in a concerted activation manner of the three metal species with H2.

12.
Phys Chem Chem Phys ; 20(29): 19532-19538, 2018 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-29999069

RESUMO

The functionalization of graphene is important in practical applications of graphene, such as in catalysts. However, the experimental study of the interactions of adsorbed molecules with functionalized graphene is difficult under ambient conditions at which catalysts are operated. Here, the adsorption of CO2 on an oxygen-functionalized epitaxial graphene surface was studied under near-ambient conditions using ambient-pressure X-ray photoelectron spectroscopy (AP-XPS). The oxygen-functionalization of graphene is achieved in situ by the photo-induced dissociation of CO2 with X-rays on graphene in a CO2 gas atmosphere. The oxygen species on the graphene surface is identified as the epoxy group by XPS binding energies and thermal stability. Under near-ambient conditions of 1.6 mbar CO2 gas pressure and 175 K sample temperature, CO2 molecules are not adsorbed on the pristine graphene, but are adsorbed on the oxygen-functionalized graphene surface. The increase in the adsorption energy of CO2 on the oxygen-functionalized graphene surface is supported by first-principles calculations with the van der Waals density functional (vdW-DF) method. The adsorption of CO2 on the oxygen-functionalized graphene surface is enhanced by both the electrostatic interactions between the CO2 and the epoxy group and the vdW interactions between the CO2 and graphene. The detailed understanding of the interaction between CO2 and the oxygen-functionalized graphene surface obtained in this study may assist in developing guidelines for designing novel graphene-based catalysts.

13.
J Chem Phys ; 147(9): 094702, 2017 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-28886627

RESUMO

We investigated the adsorption of CO2 on the flat, stepped, and kinked copper surfaces from density functional theory calculations as well as the temperature programmed desorption and X-ray photoelectron spectroscopy. Several exchange-correlation functionals have been considered to characterize CO2 adsorption on the copper surfaces. We used the van der Waals density functionals (vdW-DFs), i.e., the original vdW-DF (vdW-DF1), optB86b-vdW, and rev-vdW-DF2, as well as the Perdew-Burke-Ernzerhof (PBE) with dispersion correction (PBE-D2). We have found that vdW-DF1 and rev-vdW-DF2 functionals slightly underestimate the adsorption energy, while PBE-D2 and optB86b-vdW functionals give better agreement with the experimental estimation for CO2 on Cu(111). The calculated CO2 adsorption energies on the flat, stepped, and kinked Cu surfaces are 20-27 kJ/mol, which are compatible with the general notion of physisorbed species on solid surfaces. Our results provide a useful insight into appropriate vdW functionals for further investigation of related CO2 activation on Cu surfaces such as methanol synthesis and higher alcohol production.

14.
J Chem Phys ; 144(5): 054703, 2016 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-26851930

RESUMO

Adsorption states of carbon dioxide on the Cu(997) and Cu(111) surfaces were investigated by infrared reflection absorption spectroscopy, temperature programmed desorption, and X-ray photoelectron spectroscopy. CO2 molecules are physisorbed on the Cu(997) surface at temperatures below 70 K; neither chemisorption nor dissociation of CO2 occurs on the Cu(997) surface at this low temperature. However, the vibrational spectra of adsorbed CO2 depend significantly on the substrate temperature and coverage. IR spectra of CO2 vibrational modes at 70 K show asymmetric Fano line shapes, while only normal absorption bands are observed when CO2 is adsorbed at 20 K. Fano line shapes are also observed for CO2 on Cu(111) at 85 K. The observation of Fano effect indicates the coupling between the electronic continuum states of the Cu surface and the internal vibrational modes of CO2 even in such physisorbed system.

15.
J Chem Phys ; 143(23): 234707, 2015 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-26696070

RESUMO

Quantitative analysis of desorption and decomposition kinetics of formic acid (HCOOH) on Cu(111) was performed by temperature programmed desorption (TPD), X-ray photoelectron spectroscopy, and time-resolved infrared reflection absorption spectroscopy. The activation energy for desorption is estimated to be 53-75 kJ/mol by the threshold TPD method as a function of coverage. Vibrational spectra of the first layer HCOOH at 155.3 K show that adsorbed molecules form a polymeric structure via the hydrogen bonding network. Adsorbed HCOOH molecules are dissociated gradually into monodentate formate species. The activation energy for the dissociation into monodentate formate species is estimated to be 65.0 kJ/mol at a submonolayer coverage (0.26 molecules/surface Cu atom). The hydrogen bonding between adsorbed HCOOH species plays an important role in the stabilization of HCOOH on Cu(111). The monodentate formate species are stabilized at higher coverages, because of the lack of vacant sites for the bidentate formation.

16.
Chem Rec ; 14(5): 848-56, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25092039

RESUMO

The nature of C-H···M (M = metal surface) interactions is reviewed based mainly on our recent investigations of cyclohexane on Rh(111). Infrared reflection-absorption spectroscopy measurements at low temperature (∼20 K) have shown that the softened CH stretching band consists of several sharp peaks. At temperatures above 80 K, each peak is broadened, most probably by anharmonic coupling with thermally excited low-energy frustrated translational modes. The origin of fine structure in this band and its similarity to that in hydrogen bond systems are discussed. In addition, novel isotope effects were observed in desorption kinetics and adsorption geometry of cyclohexane on Rh(111) using temperature programmed desorption, ultraviolet photoelectron spectroscopy, and spot profile analysis low-energy electron diffraction. The desorption energy of deuterated cyclohexane (C6 D12 ) is lower than that of C6 H12 (inverse kinetic isotope effect). In addition, the work function change by adsorbed C6 D12 is smaller than that by adsorbed C6 H12 . These results indicate that C6 D12 molecules are slightly more distant from the surface than C6 H12 molecules (vertical geometric isotope effect). A lateral geometric isotope effect was also observed for the two-dimensional cyclohexane superstructures as a result of the repulsive interaction between interfacial dipoles (= work function change). These isotope effects are ascribed to the quantum nature of hydrogen involved in the C-H···M interaction.

17.
J Chem Phys ; 138(4): 044702, 2013 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-23387610

RESUMO

Adsorption states and electronic structure of cyclohexane on clean and hydrogen-saturated Rh(111) surfaces were investigated by scanning tunneling microscopy and photoelectron spectroscopy. Monolayer cyclohexane molecules form an ordered superstructure on the clean Rh(111) surface. The energy level alignment of adsorbed cyclohexane depends on each adsorption site; molecular orbitals of adsorbed cyclohexane on the atop site have lower binding energies than those on the other sites. In contrast, it becomes insensitive to adsorption sites on the hydrogen-saturated Rh(111) surface. By preadsorption of hydrogen, all cyclohexane molecular orbitals are uniformly shifted to lower binding energy compared to those on the clean Rh(111) surface. The observed energy level alignment of cyclohexane on the Rh(111) surfaces is determined by the vacuum level shift and the final-state screening effects.


Assuntos
Algoritmos , Cicloexanos/química , Teoria Quântica , Ródio/química , Adsorção , Microscopia de Tunelamento , Espectroscopia Fotoeletrônica , Propriedades de Superfície
18.
J Chem Phys ; 136(21): 214705, 2012 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-22697564

RESUMO

Novel isotope effects were observed in desorption kinetics and adsorption geometry of cyclohexane on Rh(111) by the use of infrared reflection absorption spectroscopy, temperature programmed desorption, photoelectron spectroscopy, and spot-profile-analysis low energy electron diffraction. The desorption energy of deuterated cyclohexane (C(6)D(12)) is lower than that of C(6)H(12). In addition, the work function change by adsorbed C(6)D(12) is smaller than that by adsorbed C(6)H(12). These results indicate that C(6)D(12) has a shallower adsorption potential than C(6)H(12) (vertical geometric isotope effect). The lateral geometric isotope effect was also observed in the two-dimensional cyclohexane superstructures as a result of the different repulsive interaction between interfacial dipoles. The observed isotope effects should be ascribed to the quantum nature of hydrogen involved in the C-H···metal interaction.


Assuntos
Cicloexanos/química , Teoria Quântica , Ródio/química , Adsorção , Isótopos/química , Cinética , Propriedades de Superfície
19.
J Chem Phys ; 135(23): 234704, 2011 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-22191897

RESUMO

Adsorption structures and interaction of cyclohexane molecules on the clean and hydrogen-preadsorbed Rh(111) surfaces were investigated using scanning tunneling microscopy, spot-profile-analysis low-energy electron diffraction, temperature-programmed desorption, and infrared reflection absorption spectroscopy (IRAS). Various ordered structures of adsorbed cyclohexane were observed as a function of hydrogen and cyclohexane coverages. When the fractional coverage (θ(H)) of preadsorbed hydrogen was below 0.8, four different commensurate or higher-order commensurate superstructures were found as a function of θ(H); whereas more densely packed incommensurate overlayers became dominant at higher θ(H). IRAS measurements showed sharp softened C-H vibrational peaks at 20 K, which originate from the electronic interaction between adsorbed cyclohexane and the Rh surface. The multiple softened C-H stretching peaks in each phase are due to the variation in the adsorption distance from the substrate. At high hydrogen coverages they became attenuated in intensity and eventually diminished at θ(H) = 1. The gradual disappearance of the soft mode correlates well with the structural phase transition from commensurate structures to incommensurate structures with increasing hydrogen coverage. The superstructure of adsorbed cyclohexane is controlled by the delicate balance between adsorbate-adsorbate and adsorbate-substrate interactions which are affected by preadsorbed hydrogen.

20.
J Chem Phys ; 135(5): 054702, 2011 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-21823721

RESUMO

We investigated the water (D(2)O) adsorption at 135 K on a hydrogen pre-adsorbed Rh(111) surface using temperature programmed desorption and infrared reflection absorption spectroscopy (IRAS) in ultrahigh vacuum. With increasing the hydrogen coverage, the desorption temperature of water decreases. At the saturation coverage of hydrogen, dewetting growth of water ice was observed: large three-dimensional ice grains are formed. The activation energy of water desorption from the hydrogen-saturated Rh(111) surface is estimated to be 51 kJ/mol. The initial sticking probability of water decreases from 0.46 on the clean surface to 0.35 on the hydrogen-saturated surface. In IRAS measurements, D-down species were not observed on the hydrogen saturated surface. The present experimental results clearly show that a hydrophilic Rh(111) clean surface changes into a hydrophobic surface as a result of hydrogen adsorption.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA