Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
NanoImpact ; 30: 100459, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36948454

RESUMO

Engineered Nanomaterials (ENMs) have several uses in various industrial fields and are embedded in a myriad of consumer products. However, there is continued concern over the potential adverse health effects and environmental impacts of ENMs due to their unique physico-chemical characteristics. Currently, there are no specific international regulations for various ENMs. There are also no Occupational Exposure Limits (OEL) regulated by the European Union (EU) for nanomaterials in the form of nano-objects, their aggregates or agglomerates (NOAA). For ENMs the question of which metric to be used (i.e., mass, surface area, number concentrations) to determine the exposure is still not resolved. The aim of this work is to assess the worker exposure by inhalation in an industrial spray coating process by using all three metrics mentioned above. Two target ENMs (N-doped TiO2, TiO2N and AgNPs capped with a quaternized hydroxyethyl-cellulose, AgHEC) generated for industrial-scale spraying processes were considered. Results showed that the averaged particle number concentration (10-100 nm) was below 2.7 104 cm-3 for both materials. The Lung Deposited Surface Area (LDSA) was in the range between 73 and 98 µm2cm-3 and the particle mass concentration (obtained by means of ICP-EOS off-line analysis) resulted below 70 µg m-3 and 0.4 µg m-3 for TiO2 and Ag, respectively. Although, the airborne particles concentration compared well with the NIOSH Recommended Exposure Level (REL) limits the contribution to the background, according to EN 17058 (Annex E) was significant (particularly in the particle number and PM1 mass concentrations). We successfully evaluated the worker exposure by means of the different airborne particles' metrics (number, surface and mass concentrations). We concluded that worker exposure assessment involving ENMs is a complex procedure with requires both real time and off-line measurements and a deep investigation of the background.


Assuntos
Poluentes Ocupacionais do Ar , Exposição Ocupacional , Poluentes Ocupacionais do Ar/análise , Tamanho da Partícula , Exposição Ocupacional/efeitos adversos , Aerossóis/análise
2.
Nanomaterials (Basel) ; 12(22)2022 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-36432374

RESUMO

An industrial nanocoating process air emissions impact on public health was quantified by using the burden of disease (BoD) concept. The health loss was calculated in Disability Adjusted Life Years (DALYs), which is an absolute metric that enables comparisons of the health impacts of different causes. Here, the health loss was compared with generally accepted risk levels for air pollution. Exposure response functions were not available for Ag nanoform. The health loss for TiO2 nanoform emissions were 0.0006 DALYs per 100,000 persons per year. Moreover, the exposure risk characterization was performed by comparing the ground level air concentrations with framework values. The exposure levels were ca. 3 and 18 times lower than the derived limit values of 0.1 µg-TiO2/m3 and 0.01 µg-Ag/m3 for the general population. The accumulations of TiO2 and Ag nanoforms on the soil top layer were estimated to be up to 85 µg-TiO2/kg and 1.4 µg-Ag/kg which was considered low as compared to measured elemental TiO2 and Ag concentrations. This assessment reveals that the spray coating process air emissions are adequately controlled. This study demonstrated how the BoD concept can be applied to quantify health impacts of nanoform outdoor air emissions from an industrial site.

3.
Toxics ; 10(9)2022 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-36136463

RESUMO

Effective particle density is a key parameter for assessing inhalation exposure of engineered NPs in occupational environments. In this paper, particle density measurements were carried out using two different techniques: one based on the ratio between mass and volumetric particle concentrations; the other one based on the ratio between aerodynamic and geometric particle diameter. These different approaches were applied to both field- and laboratory-scale atomization processes where the two target NPs (N-doped TiO2, TiO2N and AgNPs capped with a quaternized hydroxyethylcellulose, AgHEC) were generated. Spray tests using TiO2N were observed to release more and bigger particles than tests with AgHEC, as indicated by the measured particle mass concentrations and volumes. Our findings give an effective density of TiO2N particle to be in a similar range between field and laboratory measurements (1.8 ± 0.5 g/cm3); while AgHEC particle density showed wide variations (3.0 ± 0.5 g/cm3 and 1.2 + 0.1 g/cm3 for field and laboratory campaigns, respectively). This finding leads to speculation regarding the composition of particles emitted because atomized particle fragments may contain different Ag-to-HEC ratios, leading to different density values. A further uncertainty factor is probably related to low process emissions, making the subtraction of background concentrations from AgHEC process emissions unreliable.

4.
Nanomaterials (Basel) ; 12(4)2022 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-35214925

RESUMO

Spray coatings' emissions impact to the environmental and occupational exposure were studied in a pilot-plant. Concentrations were measured inside the spray chamber and at the work room in Near-Field (NF) and Far-Field (FF) and mass flows were analyzed using a mechanistic model. The coating was performed in a ventilated chamber by spraying titanium dioxide doped with nitrogen (TiO2N) and silver capped by hydroxyethylcellulose (Ag-HEC) nanoparticles (NPs). Process emission rates to workplace, air, and outdoor air were characterized according to process parameters, which were used to assess emission factors. Full-scale production exposure potential was estimated under reasonable worst-case (RWC) conditions. The measured TiO2-N and Ag-HEC concentrations were 40.9 TiO2-µg/m3 and 0.4 Ag-µg/m3 at NF (total fraction). Under simulated RWC conditions with precautionary emission rate estimates, the worker's 95th percentile 8-h exposure was ≤171 TiO2 and ≤1.9 Ag-µg/m3 (total fraction). Environmental emissions via local ventilation (LEV) exhaust were ca. 35 and 140 mg-NP/g-NP, for TiO2-N and Ag-HEC, respectively. Under current situation, the exposure was adequately controlled. However, under full scale production with continuous process workers exposure should be evaluated with personal sampling if recommended occupational exposure levels for nanosized TiO2 and Ag are followed for risk management.

5.
Nanomaterials (Basel) ; 12(3)2022 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-35159658

RESUMO

Industrial spray coating processes are known to produce excellent coatings on large surfaces and are thus often used for in-line production. However, they could be one of the most critical sources of worker exposure to ultrafine particles (UFPs). A monitoring campaign at the Witek s.r.l. (Florence, Italy) was deployed to characterize the release of TiO2 NPs doped with nitrogen (TiO2-N) and Ag capped with hydroxyethyl cellulose (AgHEC) during automatic industrial spray-coating of polymethyl methacrylate (PMMA) and polyester. Aerosol particles were characterized inside the spray chamber at near field (NF) and far field (FF) locations using on-line and off-line instruments. Results showed that TiO2-N suspension produced higher particle number concentrations than AgHEC in the size range 0.3-1 µm (on average 1.9 102 p/cm3 and 2.5 101 p/cm3, respectively) after background removing. At FF, especially at worst case scenario (4 nozzles, 800 mL/min flow rate) for TiO2-N, the spray spikes were correlated with NF, with an observed time lag of 1 minute corresponding to a diffusion speed of 0.1 m/s. The averaged ratio between particles mass concentrations in the NF position and inside the spray chamber was 1.7% and 1.5% for TiO2-N and for AgHEC suspensions, respectively. The released particles' number concentration of TiO2-N in the size particles range 0.3-1 µm was comparable for both PMMA and polyester substrates, about 1.5 and 1.6 102 p/cm3. In the size range 0.01-30 µm, the aerosol number concentration at NF for both suspensions was lower than the nano reference values (NRVs) of 16·103 p/cm-3.

6.
Open Res Eur ; 2: 84, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-37645270

RESUMO

Background: Photocatalytic air purifiers based on nano-titanium dioxide (TiO 2) visible light activation provide an efficient solution for removing and degrading contaminants in air. The potential detachment of TiO 2 particles from the air purifier to indoor air could cause a safety concern. A TiO 2 release potential was measured for one commercially available photocatalytic air purifier "Gearbox Wivactive" to ensure a successful implementation of the photocatalytic air purifying technology. Methods: In this study, the TiO 2 release was studied under laboratory-simulated conditions from a  Gearbox Wivactive consisting of ceramic honeycombs coated with photocatalytic nitrogen doped TiO 2 particles. The TiO 2 particle release factor was measured in scalable units according to the photoactive surface area and volume flow (TiO 2-ng/m 2×m 3). The impact of  Gearbox Wivactive on indoor concentration level under reasonable worst-case conditions was predicted by using the release factor and a well-mixed indoor aerosol model. Results: The instrumentation and experimental setup was not sufficiently sensitive to quantify the emissions from the photoactive surfaces. The upper limit for TiO 2 mass release was <185×10 -3 TiO 2-ng/m 2×m 3. Under realistic conditions the TiO 2 concentration level in a 20 m 3 room ventilated at rate of 0.5 1/h and containing two Gearbox Wivactive units resulted <20×10 -3 TiO 2-ng/m 3. Conclusions: The release potential was quantified for a photocatalytic surface in generalized units that can be used to calculate the emission potential for different photocatalytic surfaces used in various operational conditions. This study shows that the TiO 2 nanoparticle release potential was low in this case and the release does not cause relevant exposure as compared to proposed occupational exposure limit values for nanosized TiO 2. The TiO 2 release risk was adequately controlled under reasonable worst-case operational conditions.

7.
Ann Work Expo Health ; 66(4): 520-536, 2022 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-34365499

RESUMO

STOFFENMANAGER® and the Advanced REACH Tool (ART) are recommended tools by the European Chemical Agency for regulatory chemical safety assessment. The models are widely used and accepted within the scientific community. STOFFENMANAGER® alone has more than 37 000 users globally and more than 310 000 risk assessment have been carried out by 2020. Regardless of their widespread use, this is the first study evaluating the theoretical backgrounds of each model. STOFFENMANAGER® and ART are based on a modified multiplicative model where an exposure base level (mg m-3) is replaced with a dimensionless intrinsic emission score and the exposure modifying factors are replaced with multipliers that are mainly based on subjective categories that are selected by using exposure taxonomy. The intrinsic emission is a unit of concentration to the substance emission potential that represents the concentration generated in a standardized task without local ventilation. Further information or scientific justification for this selection is not provided. The multipliers have mainly discrete values given in natural logarithm steps (…, 0.3, 1, 3, …) that are allocated by expert judgements. The multipliers scientific reasoning or link to physical quantities is not reported. The models calculate a subjective exposure score, which is then translated to an exposure level (mg m-3) by using a calibration factor. The calibration factor is assigned by comparing the measured personal exposure levels with the exposure score that is calculated for the respective exposure scenarios. A mixed effect regression model was used to calculate correlation factors for four exposure group [e.g. dusts, vapors, mists (low-volatiles), and solid object/abrasion] by using ~1000 measurements for STOFFENMANAGER® and 3000 measurements for ART. The measurement data for calibration are collected from different exposure groups. For example, for dusts the calibration data were pooled from exposure measurements sampled from pharmacies, bakeries, construction industry, and so on, which violates the empirical model basic principles. The calibration databases are not publicly available and thus their quality or subjective selections cannot be evaluated. STOFFENMANAGER® and ART can be classified as subjective categorization tools providing qualitative values as their outputs. By definition, STOFFENMANAGER® and ART cannot be classified as mechanistic models or empirical models. This modeling algorithm does not reflect the physical concept originally presented for the STOFFENMANAGER® and ART. A literature review showed that the models have been validated only at the 'operational analysis' level that describes the model usability. This review revealed that the accuracy of STOFFENMANAGER® is in the range of 100 000 and for ART 100. Calibration and validation studies have shown that typical log-transformed predicted exposure concentration and measured exposure levels often exhibit weak Pearson's correlations (r is <0.6) for both STOFFENMANAGER® and ART. Based on these limitations and performance departure from regulatory criteria for risk assessment models, it is recommended that STOFFENMANAGER® and ART regulatory acceptance for chemical safety decision making should be explicitly qualified as to their current deficiencies.


Assuntos
Exposição Ocupacional , Algoritmos , Monitoramento Ambiental , Humanos , Exposição Ocupacional/análise , Medição de Risco , Ventilação
8.
Nanomaterials (Basel) ; 11(7)2021 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-34361203

RESUMO

In this paper, we demonstrate the realization process of a pragmatic approach on developing a template for capturing field monitoring data in nanomanufacturing processes. The template serves the fundamental principles which make data scientifically Findable, Accessible, Interoperable and Reusable (FAIR principles), as well as encouraging individuals to reuse it. In our case, the data shepherds' (the guider of data) template creation workflow consists of the following steps: (1) Identify relevant stakeholders, (2) Distribute questionnaires to capture a general description of the data to be generated, (3) Understand the needs and requirements of each stakeholder, (4) Interactive simple communication with the stakeholders for variables/descriptors selection, and (5) Design of the template and annotation of descriptors. We provide an annotated template for capturing exposure field campaign monitoring data, and increase their interoperability, while comparing it with existing templates. This paper enables the data creators of exposure field campaign data to store data in a FAIR way and helps the scientific community, such as data shepherds, by avoiding extensive steps for template creation and by utilizing the pragmatic structure and/or the template proposed herein, in the case of a nanotechnology project (Anticipating Safety Issues at the Design of Nano Product Development, ASINA).

9.
Environ Sci Technol ; 55(1): 25-43, 2021 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-33319994

RESUMO

A critical review of the current state of knowledge of chemical emissions from indoor sources, partitioning among indoor compartments, and the ensuing indoor exposure leads to a proposal for a modular mechanistic framework for predicting human exposure to semivolatile organic compounds (SVOCs). Mechanistically consistent source emission categories include solid, soft, frequent contact, applied, sprayed, and high temperature sources. Environmental compartments are the gas phase, airborne particles, settled dust, indoor surfaces, and clothing. Identified research needs are the development of dynamic emission models for several of the source emission categories and of estimation strategies for critical model parameters. The modular structure of the framework facilitates subsequent inclusion of new knowledge, other chemical classes of indoor pollutants, and additional mechanistic processes relevant to human exposure indoors. The framework may serve as the foundation for developing an open-source community model to better support collaborative research and improve access for application by stakeholders. Combining exposure estimates derived using this framework with toxicity data for different end points and toxicokinetic mechanisms will accelerate chemical risk prioritization, advance effective chemical management decisions, and protect public health.


Assuntos
Poluentes Atmosféricos , Poluição do Ar em Ambientes Fechados , Compostos Orgânicos Voláteis , Poluentes Atmosféricos/análise , Poluição do Ar em Ambientes Fechados/análise , Poeira/análise , Humanos , Compostos Orgânicos/análise , Compostos Orgânicos Voláteis/análise
10.
Open Res Eur ; 1: 72, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-37645135

RESUMO

Background: The Registration, Evaluation, Authorization and Restriction of Chemicals (REACH) regulation requires the establishment of Conditions of Use (CoU) for all exposure scenarios to ensure good communication of safe working practices. Setting CoU requires the risk assessment of all relevant Contributing Scenarios (CSs) in the exposure scenario. A new CS has to be created whenever an Operational Condition (OC) is changed, resulting in an excessive number of exposure assessments. An efficient solution is to quantify OC concentrations and to identify reasonable worst-case scenarios with probabilistic exposure modeling. Methods: Here, we appoint CoU for powder pouring during the industrial manufacturing of a paint batch by quantifying OC exposure levels and exposure determinants. The quantification was performed by using stationary measurements and a probabilistic Near-Field/Far-Field (NF/FF) exposure model. Work shift and OC concentration levels were quantified for pouring TiO 2 from big bags and small bags, pouring Micro Mica from small bags, and cleaning. The impact of exposure determinants on NF concentration level was quantified by (1) assessing exposure determinants correlation with the NF exposure level and (2) by performing simulations with different OCs. Results: Emission rate, air mixing between NF and FF and local ventilation were the most relevant exposure determinants affecting NF concentrations. Potentially risky OCs were identified by performing Reasonable Worst Case (RWC) simulations and by comparing the exposure 95 th percentile distribution with 10% of the occupational exposure limit value (OELV). The CS was shown safe except in RWC scenario (ventilation rate from 0.4 to 1.6 1/h, 100 m 3 room, no local ventilation, and NF ventilation of 1.6 m 3/min). Conclusions: The CoU assessment was considered to comply with European Chemicals Agency (ECHA) legislation and EN 689 exposure assessment strategy for testing compliance with OEL values. One RWC scenario would require measurements since the exposure level was 12.5% of the OELV.

11.
Small ; 16(6): e1904749, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31913582

RESUMO

Advanced material development, including at the nanoscale, comprises costly and complex challenges coupled to ensuring human and environmental safety. Governmental agencies regulating safety have announced interest toward acceptance of safety data generated under the collective term New Approach Methodologies (NAMs), as such technologies/approaches offer marked potential to progress the integration of safety testing measures during innovation from idea to product launch of nanomaterials. Divided in overall eight main categories, searchable databases for grouping and read across purposes, exposure assessment and modeling, in silico modeling of physicochemical structure and hazard data, in vitro high-throughput and high-content screening assays, dose-response assessments and modeling, analyses of biological processes and toxicity pathways, kinetics and dose extrapolation, consideration of relevant exposure levels and biomarker endpoints typify such useful NAMs. Their application generally agrees with articulated stakeholder needs for improvement of safety testing procedures. They further fit for inclusion and add value in nanomaterials risk assessment tools. Overall 37 of 50 evaluated NAMs and tiered workflows applying NAMs are recommended for considering safer-by-design innovation, including guidance to the selection of specific NAMs in the eight categories. An innovation funnel enriched with safety methods is ultimately proposed under the central aim of promoting rigorous nanomaterials innovation.


Assuntos
Ciência dos Materiais , Nanoestruturas , Segurança , Testes de Toxicidade , Simulação por Computador , Humanos , Ciência dos Materiais/métodos , Ciência dos Materiais/tendências , Nanoestruturas/normas , Medição de Risco
13.
Environ Toxicol Pharmacol ; 73: 103266, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31707308

RESUMO

The toxicological potential of halloysite nanotubes (HNTs) and variants after functional alterations to surface area are not clear. We assessed the toxicological response to HNTs (NaturalNano (NN)) before and after surface etching (NN-etched). Potential cytotoxicity of the two HNTs was screened in vitro in MutaTMMouse lung epithelial cells. Lung inflammation, acute phase response and genotoxicity were assessed 1, 3, and 28 days after a single intratracheal instillation of adult female C57BL/6 J BomTac mice. The doses were 6, 18 or 54 µg of HNTs, compared to vehicle controls and the Carbon black NP (Printex 90) of 162 µg/mouse. The cellular composition of bronchoalveolar lavage (BAL) fluid was determined as a measure of lung inflammation. The pulmonary and hepatic acute phase responses were assessed by Serumamyloida mRNA levels in lung and liver tissue by real-time quantitative PCR. Pulmonary and systemic genotoxicity were analyzed by the alkaline comet assay as DNA strand breaks in BAL cells, lung and liver tissue. The etched HNT (NN-etched) had 4-5 times larger BET surface area than the unmodified HNT (NN). Instillation of NN-etched at the highest dose induced influx of neutrophils into the lungs at all time points and increased Saa3 mRNA levels in lung tissue on day 1 and 3 after exposure. No genotoxicity was observed at any time point. In conclusion, functionalization by etching increased BET surface area of the studied NN and enhanced pulmonary inflammatory toxicity in mice.


Assuntos
Reação de Fase Aguda , Argila , Pulmão/efeitos dos fármacos , Nanotubos/toxicidade , Animais , Líquido da Lavagem Broncoalveolar , Ensaio Cometa , Camundongos , Camundongos Endogâmicos C57BL , Nanotubos/química , Pneumonia
14.
Indoor Air ; 29(5): 803-816, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31206776

RESUMO

A particle exposure experiment inside a large climate-controlled chamber was conducted. Data on spatial and temporal distribution of nanoscale and fine aerosols in the range of mobility diameters 8-600 nm were collected with high resolution, for sodium chloride, fluorescein sodium, and silica particles. Exposure scenarios studied included constant and intermittent source emissions, different aggregation conditions, high (10 h-1 ) and low (3.5 h-1 ) air exchange rates (AERs) corresponding to chamber Reynolds number, respectively, equal to 1 × 105 and 3 × 104 . Results are presented and analyzed to highlight the main determinants of exposure and to determine whether the assumptions underlying two-box models hold under various scenarios. The main determinants of exposure found were the source generation rate and the ventilation rate. The effect of particles nature was indiscernible, and the decrease of airborne total number concentrations attributable to surface deposition was estimated lower than 2% when the source was active. A near-field/far-field structure of aerosol concentration was always observed for the AER = 10 h-1 but for AER = 3.5 h-1 , a single-field structure was found. The particle size distribution was always homogeneous in space but a general shift of particle diameter (-8% to +16%) was observed between scenarios in correlation with the AER and with the source position, presumably largely attributable to aggregation.


Assuntos
Aerossóis/análise , Poluentes Atmosféricos/análise , Poluição do Ar em Ambientes Fechados/análise , Monitoramento Ambiental , Humanos , Modelos Teóricos , Nanopartículas , Tamanho da Partícula , Análise Espaço-Temporal , Ventilação
15.
Part Fibre Toxicol ; 16(1): 23, 2019 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-31182125

RESUMO

BACKGROUND: Little is known about the exposure levels and adverse health effects of occupational exposure to airplane emissions. Diesel exhaust particles are classified as carcinogenic to humans and jet engines produce potentially similar soot particles. Here, we evaluated the potential occupational exposure risk by analyzing particles from a non-commercial airfield and from the apron of a commercial airport. Toxicity of the collected particles was evaluated alongside NIST standard reference diesel exhaust particles (NIST2975) in terms of acute phase response, pulmonary inflammation, and genotoxicity after single intratracheal instillation in mice. RESULTS: Particle exposure levels were up to 1 mg/m3 at the non-commercial airfield. Particulate matter from the non-commercial airfield air consisted of primary and aggregated soot particles, whereas commercial airport sampling resulted in a more heterogeneous mixture of organic compounds including salt, pollen and soot, reflecting the complex occupational exposure at an apron. The particle contents of polycyclic aromatic hydrocarbons and metals were similar to the content in NIST2975. Mice were exposed to doses 6, 18 and 54 µg alongside carbon black (Printex 90) and NIST2975 and euthanized after 1, 28 or 90 days. Dose-dependent increases in total number of cells, neutrophils, and eosinophils in bronchoalveolar lavage fluid were observed on day 1 post-exposure for all particles. Lymphocytes were increased for all four particle types on 28 days post-exposure as well as for neutrophil influx for jet engine particles and carbon black nanoparticles. Increased Saa3 mRNA levels in lung tissue and increased SAA3 protein levels in plasma were observed on day 1 post-exposure. Increased levels of DNA strand breaks in bronchoalveolar lavage cells and liver tissue were observed for both particles, at single dose levels across doses and time points. CONCLUSIONS: Pulmonary exposure of mice to particles collected at two airports induced acute phase response, inflammation, and genotoxicity similar to standard diesel exhaust particles and carbon black nanoparticles, suggesting similar physicochemical properties and toxicity of jet engine particles and diesel exhaust particles. Given this resemblance as well as the dose-response relationship between diesel exhaust exposure and lung cancer, occupational exposure to jet engine emissions at the two airports should be minimized.


Assuntos
Poluentes Ocupacionais do Ar/toxicidade , Aeroportos , Dano ao DNA , Pulmão/efeitos dos fármacos , Material Particulado/toxicidade , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , Poluentes Ocupacionais do Ar/análise , Poluentes Ocupacionais do Ar/farmacocinética , Animais , Biomarcadores/sangue , Líquido da Lavagem Broncoalveolar/citologia , Feminino , Pulmão/metabolismo , Pulmão/ultraestrutura , Camundongos Endogâmicos C57BL , Exposição Ocupacional/efeitos adversos , Exposição Ocupacional/análise , Material Particulado/análise , Material Particulado/farmacocinética , Hidrocarbonetos Policíclicos Aromáticos/análise , Hidrocarbonetos Policíclicos Aromáticos/farmacocinética , Proteína Amiloide A Sérica/análise , Fatores de Tempo , Distribuição Tecidual
16.
Sci Total Environ ; 668: 13-24, 2019 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-30851679

RESUMO

Poor air quality is a leading contributor to the global disease burden and total number of deaths worldwide. Humans spend most of their time in built environments where the majority of the inhalation exposure occurs. Indoor Air Quality (IAQ) is challenged by outdoor air pollution entering indoors through ventilation and infiltration and by indoor emission sources. The aim of this study was to understand the current knowledge level and gaps regarding effective approaches to improve IAQ. Emission regulations currently focus on outdoor emissions, whereas quantitative understanding of emissions from indoor sources is generally lacking. Therefore, specific indoor sources need to be identified, characterized, and quantified according to their environmental and human health impact. The emission sources should be stored in terms of relevant metrics and statistics in an easily accessible format that is applicable for source specific exposure assessment by using mathematical mass balance modelings. This forms a foundation for comprehensive risk assessment and efficient interventions. For such a general exposure assessment model we need 1) systematic methods for indoor aerosol emission source assessment, 2) source emission documentation in terms of relevant a) aerosol metrics and b) biological metrics, 3) default model parameterization for predictive exposure modeling, 4) other needs related to aerosol characterization techniques and modeling methods. Such a general exposure assessment model can be applicable for private, public, and occupational indoor exposure assessment, making it a valuable tool for public health professionals, product safety designers, industrial hygienists, building scientists, and environmental consultants working in the field of IAQ and health.


Assuntos
Poluentes Atmosféricos/análise , Poluição do Ar em Ambientes Fechados/estatística & dados numéricos , Monitoramento Ambiental , Exposição por Inalação/estatística & dados numéricos , Aerossóis , Poluição do Ar/estatística & dados numéricos , Exposição Ambiental , Humanos , Modelos Teóricos , Material Particulado , Medição de Risco
17.
Ann Work Expo Health ; 63(2): 148-157, 2019 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-30615066

RESUMO

INTRODUCTION: Knowledge on the exposure characteristics, including release of nanomaterials, is especially needed in the later stages of nano-enabled products' life cycles to perform better occupational risk assessments. The objective of this study was to assess the concentrations during sawing and drilling in car bumpers containing multi-walled carbon nanotubes (MWCNTs) and nanosized organic pigment (OP) under variable realistic workplace situations related to the ventilation in the room and machine settings. METHODS: Twelve different experiments were performed in triplicate (N = 36) using tools powered by induction engines that allow interference-free particle measurements. A DiSCmini was used to measure particle number concentrations, whereas particle size distributions were measured using Aerodynamic Particle Sizer (TSI), Scanning Mobility Particle Sizer (TSI), and Electrical Low Pressure Impactor (Dekati). In addition, inhalable particles were sampled using IOM samplers on filters for scanning electron microscope/energy-dispersive X-ray spectrometry (SEM/EDX) analyses. Data were analysed to estimate the effects of individual exposure determinants, in a two-stage modelling strategy using Autoregressive Integrated Moving Average models (stage 1) and subsequently combining first stage results in simulations using multiple linear regression models (stage 2). RESULTS: In sawing experiments, partly melted carbon-rich particles (mainly ~2 to ~8 µm) were identified with SEM/EDX, whereas drilling experiments revealed no activity-related particles. In addition, no pristine engineered nanoparticles (MWCNTs and OP) were observed to be liberated from the matrix. Statistical analyses showed significant effects of a higher sawing speed, a reduction in air concentration due to mechanical ventilation, and less exposure during sawing of car bumpers containing MWCNTs compared to bumpers containing OP. CONCLUSION: The experiments in this study give an indication of the effects of different abrasive activities (sawing, drilling), machine settings (sawing speed, drill size), mechanical ventilation, and material characteristics on the manufactured nano-objects, their agglomerates, and aggregates concentration levels.


Assuntos
Poluentes Ocupacionais do Ar/análise , Corantes/análise , Nanotubos de Carbono/análise , Exposição Ocupacional/análise , Automóveis , Monitoramento Ambiental/métodos , Humanos , Indústrias , Microscopia Eletrônica de Varredura , Nanocompostos/análise , Nanoestruturas , Tamanho da Partícula , Análise de Regressão , Espectrometria por Raios X , Local de Trabalho
18.
Nanotoxicology ; 12(7): 747-765, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29893192

RESUMO

The use of nano-scale copper oxide (CuO) and basic copper carbonate (Cu2(OH)2CO3) in both ionic and micronized wood preservatives has raised concerns about the potential of these substances to cause adverse humans health effects. To address these concerns, we performed quantitative (probabilistic) human health risk assessment (HHRA) along the lifecycles of these formulations used in antibacterial and antifungal wood coatings and impregnations by means of the EU FP7 SUN project's Decision Support System (SUNDS, www.sunds.gd). The results from the risk analysis revealed inhalation risks from CuO in exposure scenarios involving workers handling dry powders and performing sanding operations as well as potential ingestion risks for children exposed to nano Cu2(OH)2CO3 in a scenario involving hand-to-mouth transfer of the substance released from impregnated wood. There are, however, substantial uncertainties in these results, so some of the identified risks may stem from the safety margin of extrapolation to fill data gaps and might be resolved by additional testing. Our stochastic approach successfully communicated the contribution of different sources of uncertainty in the risk assessment. The main source of uncertainty was the extrapolation from short to long-term exposure, which was necessary due to the lack of (sub)chronic in vivo studies with CuO and Cu2(OH)2CO3. Considerable uncertainties also stemmed from the use of default inter- and intra-species extrapolation factors.


Assuntos
Anti-Infecciosos/toxicidade , Carbonatos/toxicidade , Cobre/toxicidade , Exposição Ambiental/efeitos adversos , Nanopartículas/toxicidade , Madeira/microbiologia , Animais , Anti-Infecciosos/análise , Carbonatos/análise , Criança , Cobre/análise , Relação Dose-Resposta a Droga , Exposição Ambiental/análise , Humanos , Masculino , Nanopartículas/análise , Ratos , Medição de Risco , Fatores de Tempo
19.
Sci Total Environ ; 630: 1283-1291, 2018 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-29554749

RESUMO

Nanoscale TiO2 (nTiO2) is manufactured in high volumes and is of potential concern in occupational health. Here, we measured workers exposure levels while ceramic honeycombs were dip coated with liquid photoactive nanoparticle suspension and dried with an air blade. The measured nTiO2 concentration levels were used to assess process specific emission rates using a convolution theorem and to calculate inhalation dose rates of deposited nTiO2 particles. Dip coating did not result in detectable release of particles but air blade drying released fine-sized TiO2 and nTiO2 particles. nTiO2 was found in pure nTiO2 agglomerates and as individual particles deposited onto background particles. Total particle emission rates were 420×109min-1, 1.33×109µm2min-1, and 3.5mgmin-1 respirable mass. During a continued repeated process, the average exposure level was 2.5×104cm-3, 30.3µm2cm-3, <116µgm-3 for particulate matter. The TiO2 average exposure level was 4.2µgm-3, which is well below the maximum recommended exposure limit of 300µgm-3 for nTiO2 proposed by the US National Institute for Occupational Safety and Health. During an 8-hour exposure, the observed concentrations would result in a lung deposited surface area of 4.3×10-3cm2g-1 of lung tissue and 13µg of TiO2 to the trachea-bronchi, and alveolar regions. The dose levels were well below the one hundredth of the no observed effect level (NOEL1/100) of 0.11cm2g-1 for granular biodurable particles and a daily no significant risk dose level of 44µgday-1. These emission rates can be used in a mass flow model to predict the impact of process emissions on personal and environmental exposure levels.


Assuntos
Filtros de Ar , Poluentes Ocupacionais do Ar/análise , Exposição por Inalação/prevenção & controle , Exposição Ocupacional/prevenção & controle , Cerâmica , Monitoramento Ambiental , Humanos , Nanopartículas , Tamanho da Partícula , Material Particulado , Titânio
20.
Nanotoxicology ; 11(4): 558-568, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28494628

RESUMO

The development and use of emerging technologies such as nanomaterials can provide both benefits and risks to society. Emerging materials may promise to bring many technological advantages but may not be well characterized in terms of their production volumes, magnitude of emissions, behaviour in the environment and effects on living organisms. This uncertainty can present challenges to scientists developing these materials and persons responsible for defining and measuring their adverse impacts. Human health risk assessment is a method of identifying the intrinsic hazard of and quantifying the dose-response relationship and exposure to a chemical, to finally determine the estimation of risk. Commonly applied deterministic approaches may not sufficiently estimate and communicate the likelihood of risks from emerging technologies whose uncertainty is large. Probabilistic approaches allow for parameters in the risk assessment process to be defined by distributions instead of single deterministic values whose uncertainty could undermine the value of the assessment. A probabilistic approach was applied to the dose-response and exposure assessment of a case study involving the production of nanoparticles of titanium dioxide in seven different exposure scenarios. Only one exposure scenario showed a statistically significant level of risk. In the latter case, this involved dumping high volumes of nano-TiO2 powders into an open vessel with no personal protection equipment. The probabilistic approach not only provided the likelihood of but also the major contributing factors to the estimated risk (e.g. emission potential).


Assuntos
Poluentes Ocupacionais do Ar/toxicidade , Nanopartículas/toxicidade , Titânio/toxicidade , Relação Dose-Resposta a Droga , Humanos , Exposição por Inalação/efeitos adversos , Exposição por Inalação/análise , Modelos Estatísticos , Modelos Teóricos , Método de Monte Carlo , Medição de Risco/métodos , Local de Trabalho/normas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA