Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 22(4)2021 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-33557206

RESUMO

Treatment-induced neuropathy in diabetes (TIND) is defined by the occurrence of an acute neuropathy within 8 weeks of an abrupt decrease in glycated hemoglobin-A1c (HbA1c). The underlying pathogenic mechanisms are still incompletely understood with only one mouse model being explored to date. The aim of this study was to further explore the hypothesis that an abrupt insulin-induced fall in HbA1c may be the prime causal factor of developing TIND. BB/OKL (bio breeding/OKL, Ottawa Karlsburg Leipzig) diabetic rats were randomized in three groups, receiving insulin treatment by implanted subcutaneous osmotic insulin pumps for 3 months, as follows: Group one received 2 units per day; group two 1 unit per day: and group three 1 unit per day in the first month, followed by 2 units per day in the last two months. We serially examined blood glucose and HbA1c levels, motor- and sensory/mixed afferent conduction velocities (mNCV and csNCV) and peripheral nerve morphology, including intraepidermal nerve fiber density and numbers of Iba-1 (ionized calcium binding adaptor molecule 1) positive macrophages in the sciatic nerve. Only in BB/OKL rats of group three, with a rapid decrease in HbA1c of more than 2%, did we find a significant decrease in mNCV in sciatic nerves (81% of initial values) after three months of treatment as compared to those group three rats with a less marked decrease in HbA1c <2% (mNCV 106% of initial values, p ≤ 0.01). A similar trend was observed for sensory/mixed afferent nerve conduction velocities: csNCV were reduced in BB/OKL rats with a rapid decrease in HbA1c >2% (csNCV 90% of initial values), compared to those rats with a mild decrease <2% (csNCV 112% of initial values, p ≤ 0.01). Moreover, BB/OKL rats of group three with a decrease in HbA1c >2% showed significantly greater infiltration of macrophages by about 50% (p ≤ 0.01) and a decreased amount of calcitonin gene related peptide (CGRP) positive nerve fibers as compared to the animals with a milder decrease in HbA1c. We conclude that a mild acute neuropathy with inflammatory components was induced in BB/OKL rats as a consequence of an abrupt decrease in HbA1c caused by high-dose insulin treatment. This experimentally induced neuropathy shares some features with TIND in humans and may be further explored in studies into the pathogenesis and treatment of TIND.


Assuntos
Glicemia/metabolismo , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Tipo 1/tratamento farmacológico , Neuropatias Diabéticas/patologia , Modelos Animais de Doenças , Hemoglobinas Glicadas/metabolismo , Insulina/toxicidade , Animais , Diabetes Mellitus Experimental/patologia , Diabetes Mellitus Tipo 1/patologia , Neuropatias Diabéticas/induzido quimicamente , Hipoglicemiantes/toxicidade , Masculino , Condução Nervosa/efeitos dos fármacos , Ratos
2.
Neuroscience ; 406: 496-509, 2019 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-30867132

RESUMO

Peripheral diabetic neuropathy (PDN) is one of the most common complications of diabetes mellitus. Previous studies showed an association between dietary iron load and inflammation in the development of PDN in a rat model of type 1 diabetes (T1D). Here we investigated the role of iron and neural inflammation in development of PDN in a animal model of obesity and type 2 diabetes (T2D). 3-month-old db/db mice were fed with a high, standard or low iron diet for 4 months. High iron chow lead to a significant increase in motor nerve conduction velocities compared to mice on standard and low iron chow. Direct beneficiary effects on lowering blood glucose and HbA1c concentrations were shown in the high iron treated diabetic mice. Numbers of pro-inflammatory M1 macrophages were reduced in nerve sections, and anti-inflammatory M2 macrophages were increased in db/db mice on high iron diet compared to other groups. These results confirm and extend our previous findings in STZ-diabetic rats by showing that dietary non-hem iron supplementation may partly prevent the development of PDN in opposition to iron restriction. The identification of these dietary iron effects on the metabolic and inflammatory mechanisms of PDN supports a role of dietary iron and leads us to suggest testing for iron levels in human diabetic patients.


Assuntos
Neuropatias Diabéticas/fisiopatologia , Inflamação/metabolismo , Ferro/metabolismo , Fibras Nervosas/metabolismo , Animais , Glicemia/metabolismo , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/fisiopatologia , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/fisiopatologia , Modelos Animais de Doenças , Inflamação/fisiopatologia , Ferro da Dieta/metabolismo , Masculino , Camundongos Transgênicos , Obesidade/fisiopatologia , Nervo Isquiático/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA