Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Epilepsia Open ; 9(1): 187-199, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37881152

RESUMO

OBJECTIVE: The study investigated metabolic connectivity (MC) differences between patients with unilateral drug-resistant mesial temporal lobe epilepsy (MTLE) with hippocampal sclerosis (HS) and healthy controls (HCs), based on [18 F]-fluorodeoxyglucose (FDG)-PET data. We focused on the MC changes dependent on the lateralization of the epileptogenic lobe and on correlations with postoperative outcomes. METHODS: FDG-PET scans of 47 patients with unilateral MTLE with histopathologically proven HS and 25 HC were included in the study. All the patients underwent a standard anterior temporal lobectomy and were more than 2 years after the surgery. MC changes were compared between the two HS groups (left HS, right HS) and HC. Differences between the metabolic network of seizure-free and non-seizure-free patients after surgery were depicted afterward. Network changes were correlated with clinical characteristics. RESULTS: The study showed widespread metabolic network changes in the HS patients as compared to HC. The changes were more extensive in the right HS than in the left HS. Unfavorable surgical outcomes were found in patients with decreased MC within the network including both the lesional and contralesional hippocampus, ipsilesional frontal operculum, and contralesional insula. Favorable outcomes correlated with decreased MC within the network involving both orbitofrontal cortices and the ipsilesional temporal lobe. SIGNIFICANCE: There are major differences in the metabolic networks of left and right HS, with more extensive changes in right HS. The changes within the metabolic network could help predict surgical outcomes in patients with HS. MC may identify patients with potentially unfavorable outcomes and direct them to a more detailed presurgical evaluation. PLAIN LANGUAGE SUMMARY: Metabolic connectivity is a promising method for metabolic network mapping. Metabolic networks in mesial temporal lobe epilepsy are dependent on lateralization of the epileptogenic lobe and could predict surgical outcomes.


Assuntos
Epilepsia Resistente a Medicamentos , Epilepsia do Lobo Temporal , Humanos , Epilepsia do Lobo Temporal/diagnóstico por imagem , Epilepsia do Lobo Temporal/cirurgia , Fluordesoxiglucose F18/metabolismo , Lobo Temporal/metabolismo , Hipocampo/cirurgia , Hipocampo/metabolismo , Resultado do Tratamento
2.
Sci Rep ; 12(1): 15158, 2022 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-36071087

RESUMO

The objective was to determine the optimal combination of multimodal imaging methods (IMs) for localizing the epileptogenic zone (EZ) in patients with MR-negative drug-resistant epilepsy. Data from 25 patients with MR-negative focal epilepsy (age 30 ± 10 years, 16M/9F) who underwent surgical resection of the EZ and from 110 healthy controls (age 31 ± 9 years; 56M/54F) were used to evaluate IMs based on 3T MRI, FDG-PET, HD-EEG, and SPECT. Patients with successful outcomes and/or positive histological findings were evaluated. From 38 IMs calculated per patient, 13 methods were selected by evaluating the mutual similarity of the methods and the accuracy of the EZ localization. The best results in postsurgical patients for EZ localization were found for ictal/ interictal SPECT (SISCOM), FDG-PET, arterial spin labeling (ASL), functional regional homogeneity (ReHo), gray matter volume (GMV), cortical thickness, HD electrical source imaging (ESI-HD), amplitude of low-frequency fluctuation (ALFF), diffusion tensor imaging, and kurtosis imaging. Combining IMs provides the method with the most accurate EZ identification in MR-negative epilepsy. The PET, SISCOM, and selected MRI-post-processing techniques are useful for EZ localization for surgical tailoring.


Assuntos
Epilepsia , Fluordesoxiglucose F18 , Adulto , Imagem de Tensor de Difusão , Eletroencefalografia , Epilepsia/diagnóstico por imagem , Epilepsia/cirurgia , Humanos , Imageamento por Ressonância Magnética/métodos , Neuroimagem/métodos , Adulto Jovem
3.
Sci Rep ; 11(1): 10904, 2021 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-34035336

RESUMO

Drug-resistant epilepsy is a diagnostic and therapeutic challenge, mainly in patients with negative MRI findings. State-of-the-art imaging methods complement standard epilepsy protocols with new information and help epileptologists to increase the reliability of their decisions. In this study, we investigate whether arterial spin labeling (ASL) perfusion MRI can help localize the epileptogenic zone (EZ). To that end, we developed an image processing method to detect the EZ as an area with hypoperfusion relative to the contralateral unaffected side, using subject-specific thresholding of the asymmetry index in ASL images. We demonstrated three thresholding criteria (termed minimal product criterion, minimal distance criterion, and elbow criterion) on 29 patients with MRI-negative epilepsy (age 32.98 ± 10.4 years). The minimal product criterion showed optimal results in terms of positive predictive value (mean 0.12 in postoperative group and 0.22 in preoperative group) and true positive rate (mean 0.71 in postoperative group and 1.82 in preoperative group). Additionally, we found high accuracy in determining the EZ side (mean 0.86 in postoperative group and 0.73 in preoperative group out of 1.00). ASL can be easily incorporated into the standard presurgical MR protocol, and it provides an additional benefit in EZ localization.


Assuntos
Epilepsia Resistente a Medicamentos/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Interpretação de Imagem Radiográfica Assistida por Computador/métodos , Adulto , Epilepsia Resistente a Medicamentos/cirurgia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Marcadores de Spin , Resultado do Tratamento
4.
Hum Brain Mapp ; 42(9): 2921-2930, 2021 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-33772952

RESUMO

Many methods applied to data acquired by various imaging modalities have been evaluated for their benefit in localizing lesions in magnetic resonance (MR) negative epilepsy patients. No approach has proven to be a stand-alone method with sufficiently high sensitivity and specificity. The presented study addresses the potential benefit of the automated fusion of results of individual methods in presurgical evaluation. We collected electrophysiological, MR, and nuclear imaging data from 137 patients with pharmacoresistant MR-negative/inconclusive focal epilepsy. A subgroup of 32 patients underwent surgical treatment with known postsurgical outcomes and histopathology. We employed a Gaussian mixture model to reveal several classes of gray matter tissue. Classes specific to epileptogenic tissue were identified and validated using the surgery subgroup divided into two disjoint sets. We evaluated the classification accuracy of the proposed method at a voxel-wise level and assessed the effect of individual methods. The training of the classifier resulted in six classes of gray matter tissue. We found a subset of two classes specific to tissue located in resected areas. The average classification accuracy (i.e., the probability of correct classification) was significantly higher than the level of chance in the training group (0.73) and even better in the validation surgery subgroup (0.82). Nuclear imaging, diffusion-weighted imaging, and source localization of interictal epileptic discharges were the strongest methods for classification accuracy. We showed that the automatic fusion of results can identify brain areas that show epileptogenic gray matter tissue features. The method might enhance the presurgical evaluations of MR-negative epilepsy patients.


Assuntos
Eletroencefalografia/métodos , Epilepsias Parciais/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Neuroimagem/métodos , Tomografia por Emissão de Pósitrons/métodos , Tomografia Computadorizada de Emissão de Fóton Único/métodos , Adulto , Feminino , Humanos , Masculino , Imagem Multimodal
5.
Brain Topogr ; 34(4): 504-510, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33783670

RESUMO

Arterial spin labeling (ASL) is an MRI technique measuring brain perfusion using magnetically labeled blood as a tracer. The clinical utility of ASL for presurgical evaluation in non-lesional epilepsy as compared with the quantitative analysis of interictal [18F] fluorodeoxyglucose PET (FDG-PET) was studied. In 10 patients (4 female; median age 29 years) who underwent a complete presurgical evaluation followed by surgical resection, the presurgical FDG-PET and ASL scans were compared with the resection masks using asymmetry index (AI) maps. The positive predictive value (PPV) and sensitivity (SEN), were calculated from the number of voxels inside the mask (true positive), and outside the mask (false positive). The comparison of the PPVs showed better PPV in 6 patients using ASL and in 2 patients with PET. SEN was better in 4 patients using ASL and in 5 patients with PET. According to the Wilcoxon signed rank test for PPV (p = 0.74) and for SEN (p = 0.43), these methods have similar predictive power. ASL is a useful method for presurgical evaluation in non-lesional epilepsy. The main benefits of ASL over PET are that it avoids radiation exposure for patients, and it offers lower costs, higher availability, and better time efficiency.


Assuntos
Epilepsias Parciais , Fluordesoxiglucose F18 , Adulto , Circulação Cerebrovascular , Epilepsias Parciais/diagnóstico por imagem , Epilepsias Parciais/cirurgia , Feminino , Humanos , Imageamento por Ressonância Magnética , Tomografia por Emissão de Pósitrons , Marcadores de Spin
6.
Magn Reson Med ; 84(4): 1796-1805, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32129544

RESUMO

PURPOSE: To improve the slice profile quality obtained by RF half-pulse excitation for 2D-UTE applications. METHODS: The overall first-order and zero-order phase errors along the slice-selection direction were obtained with the help of an optimization task to minimize the out-of-slice signal contamination from the calibration 1-dimenisonal (1D) profile data. The time-phase-error evolution was approximated from the k-space readout data, which were acquired primarily for correction of the readout trajectories during data regridding to the rectilinear grids. The correction of the slice profile was achieved by rephasing gradient pulses applied immediately after the end of excitation. The total prescan calibration typically took less than 2 minutes. RESULTS: The improved image quality using the proposed calibration method was demonstrated both on phantoms and on ankle images obtained from healthy volunteers. It was demonstrated that calibration can be performed either as a separate water phantom measurement or directly as a prescan procedure. CONCLUSION: The slice-profile distortion from the half-pulse excitation could substantially affect the overall fidelity of 2D-UTE images. The presented experiments proved that the image quality could be substantially increased by application of the proposed slice-correction method.


Assuntos
Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Algoritmos , Calibragem , Voluntários Saudáveis , Frequência Cardíaca , Humanos , Imagens de Fantasmas
7.
Epilepsy Behav Rep ; 12: 100344, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31799507

RESUMO

We report a case of a patient with drug-resistant epilepsy treated with deep brain stimulation of the anterior nucleus of the thalamus (ANT-DBS). The patient developed psychiatric side effects (PSEs), namely irritability, hostility, aggressiveness, and paranoia, after implantation and stimulation initiation. The stimulation was discontinued and the PSEs were mitigated, but the patient did not return to her pre-implantation state, as documented by repeated psychiatric reports and hospitalizations. To our knowledge, this is the first report of a patient who developed long-term PSEs that did not disappear after stimulation discontinuation. We suppose that ANT-DBS caused a persistent perturbation of the thalamic neuronal networks that are responsible for long-term PSEs.

8.
Epilepsy Behav ; 79: 46-52, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29247965

RESUMO

OBJECTIVE: This study was designed to use statistical parametric mapping of interictal positron-emission tomography using [18F]Fluorodeoxyglucose (FDG-PET) to compare the brain metabolisms of patients with mesial temporal lobe epilepsy (MTLE)/hippocampal sclerosis and controls. Another aim of this study was to analyze the potential differences among patients in terms of epilepsy duration, side of hippocampal sclerosis, histopathological findings, insult in their history, and postoperative outcomes. METHODS: We analyzed FDG-PET scans from 49 patients with MTLE/hippocampal sclerosis and 24 control subjects. We analyzed the differences in regional glucose metabolism between the patients and the control group and within the patient group using multiple variables. RESULTS: We observed widespread hypometabolism in the patient group in comparison with the control group in temporal and extratemporal areas on the epileptogenic side (ES). On the nonepileptogenic side (NES), we observed the most hypometabolism in the thalamus and the anterior and middle cingulate gyrus. In the group of patients with more severe hippocampal sclerosis, we observed statistically significant hypometabolism in the insula on the ES. In patients with poor postoperative outcomes, we found statistically significant hypometabolism in the insula on the ES and the temporal pole (TP) on the NES. Patients with any insult in their history showed hypermetabolism in the TP on both sides. CONCLUSION: Our study showed that there are widespread changes in metabolism in patients with MTLE in comparison to controls, either inside or outside the temporal lobe. There are significant differences among these patients in terms of postoperative outcomes, degree of hippocampal sclerosis, and insults in their history.


Assuntos
Encéfalo/metabolismo , Epilepsia do Lobo Temporal/patologia , Glucose/metabolismo , Hipocampo/metabolismo , Tomografia por Emissão de Pósitrons/métodos , Esclerose/metabolismo , Adulto , Estudos de Casos e Controles , Córtex Cerebral/patologia , Epilepsia do Lobo Temporal/diagnóstico por imagem , Epilepsia do Lobo Temporal/tratamento farmacológico , Epilepsia do Lobo Temporal/cirurgia , Feminino , Fluordesoxiglucose F18/metabolismo , Hipocampo/diagnóstico por imagem , Hipocampo/patologia , Humanos , Masculino , Pessoa de Meia-Idade , Período Pós-Operatório , Valor Preditivo dos Testes , Esclerose/diagnóstico por imagem , Esclerose/patologia , Lobo Temporal/patologia , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA