Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
3.
Cureus ; 16(4): e57860, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38721172

RESUMO

During the COVID-19 pandemic, excess deaths including cancer have become a concern in Japan, which has a rapidly aging population. Thus, this study aimed to evaluate how age-adjusted mortality rates (AMRs) for different types of cancer in Japan changed during the COVID-19 pandemic (2020-2022). Official statistics from Japan were used to compare observed annual and monthly AMRs with predicted rates based on pre-pandemic (2010-2019) figures using logistic regression analysis. No significant excess mortality was observed during the first year of the pandemic (2020). However, some excess cancer mortalities were observed in 2021 after mass vaccination with the first and second vaccine doses, and significant excess mortalities were observed for all cancers and some specific types of cancer (including ovarian cancer, leukemia, prostate cancer, lip/oral/pharyngeal cancer, pancreatic cancer, and breast cancer) after mass vaccination with the third dose in 2022. AMRs for the four cancers with the most deaths (lung, colorectal, stomach, and liver) showed a decreasing trend until the first year of the pandemic in 2020, but the rate of decrease slowed in 2021 and 2022. This study discusses possible explanations for these increases in age-adjusted cancer mortality rates.

4.
PeerJ ; 12: e17126, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38515459

RESUMO

The motility of Vibrio species plays a pivotal role in their survival and adaptation to diverse environments and is intricately associated with pathogenicity in both humans and aquatic animals. Numerous mutant strains of Vibrio alginolyticus have been generated using UV or EMS mutagenesis to probe flagellar motility using molecular genetic approaches. Identifying these mutations promises to yield valuable insights into motility at the protein structural physiology level. In this study, we determined the complete genomic structure of 4 reference specimens of laboratory V. alginolyticus strains: a precursor strain, V. alginolyticus 138-2, two strains showing defects in the lateral flagellum (VIO5 and YM4), and one strain showing defects in the polar flagellum (YM19). Subsequently, we meticulously ascertained the specific mutation sites within the 18 motility-deficient strains related to the polar flagellum (they fall into three categories: flagellar-deficient, multi-flagellar, and chemotaxis-deficient strains) by whole genome sequencing and mapping to the complete genome of parental strains VIO5 or YM4. The mutant strains had an average of 20.6 (±12.7) mutations, most of which were randomly distributed throughout the genome. However, at least two or more different mutations in six flagellar-related genes were detected in 18 mutants specifically selected as chemotaxis-deficient mutants. Genomic analysis using a large number of mutant strains is a very effective tool to comprehensively identify genes associated with specific phenotypes using forward genetics.


Assuntos
Quimiotaxia , Vibrio alginolyticus , Animais , Humanos , Vibrio alginolyticus/genética , Mutação , Mutagênese
5.
Genes Cells ; 29(4): 282-289, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38351850

RESUMO

The flagellar components of Vibrio spp., PomA and PomB, form a complex that transduces sodium ion and contributes to rotate flagella. The transmembrane protein PomB is attached to the basal body T-ring by its periplasmic region and has a plug segment following the transmembrane helix to prevent ion flux. Previously we showed that PomB deleted from E41 to R120 (Δ41-120) was functionally comparable to the full-length PomB. In this study, three deletions after the plug region, PomB (Δ61-120), PomB (Δ61-140), and PomB (Δ71-150), were generated. PomB (Δ61-120) conferred motility, whereas the other two mutants showed almost no motility in soft agar plate; however, we observed some swimming cells with speed comparable for the wild-type cells. When the two PomB mutants were introduced into a wild-type strain, the swimming ability was not affected by the mutant PomBs. Then, we purified the mutant PomAB complexes to confirm the stator formation. When plug mutations were introduced into the PomB mutants, the reduced motility by the deletion was rescued, suggesting that the stator was activated. Our results indicate that the deletions prevent the stator activation and the linker and plug regions, from E41 to S150, are not essential for the motor function of PomB but are important for its regulation.


Assuntos
Proteínas de Bactérias , Peptidoglicano , Proteínas de Bactérias/metabolismo , Peptidoglicano/análise , Peptidoglicano/genética , Peptidoglicano/metabolismo , Vibrio alginolyticus/genética , Vibrio alginolyticus/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Mutação , Flagelos/metabolismo , Proteínas Motores Moleculares/genética , Proteínas Motores Moleculares/química , Proteínas Motores Moleculares/metabolismo
7.
Materials (Basel) ; 17(2)2024 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-38255468

RESUMO

Poisson's ratio is the fundamental metric used to discuss the performance of any material when strained elastically. However, the methods of the determination of Poisson's ratio are not yet discussed well. The first purpose of this paper is to introduce the five kinds of typical experimental methods to measure Poisson's ratio of glasses, ceramics, and crystals. The second purpose is to discuss the experimental results on the variation of Poisson's ratio by composition, temperature, and pressure reviewed for various glasses, ceramics, and crystals, which are not yet reviewed. For example, in oxide glasses, the number of bridging oxygen atoms per glass-forming cation provides a straightforward estimation of network crosslinking using Poisson's ratio. In the structural-phase transition of crystals, Poisson's ratio shows remarkable temperature-dependence in the vicinity of a phase-transition temperature. The mechanism of these variations is discussed from physical and chemical points of view. The first-principles calculation of Poisson's ratio in the newly hypothesized compounds is also described, and its pressure-induced ductile-brittle transition is discussed.

8.
Biophys Physicobiol ; 20(2): e200028, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38496245

RESUMO

The marine bacterium Vibrio alginolyticus has a single flagellum as a locomotory organ at the cell pole, which is rotated by the Na+-motive force to swim in a liquid. The base of the flagella has a motor composed of a stator and rotor, which serves as a power engine to generate torque through the rotor-stator interaction coupled to Na+ influx through the stator channel. The MS-ring, which is embedded in the membrane at the base of the flagella as part of the rotor, is the initial structure required for flagellum assembly. It comprises 34 molecules of the two-transmembrane protein FliF. FliG, FliM, and FliN form a C-ring just below the MS-ring. FliG is an important rotor protein that interacts with the stator PomA and directly contributes to force generation. We previously found that FliG promotes MS-ring formation in E. coli. In the present study, we constructed a fliF-fliG fusion gene, which encodes an approximately 100 kDa protein, and the successful production of this protein effectively formed the MS-ring in E. coli cells. We observed fuzzy structures around the ring using either electron microscopy or high-speed atomic force microscopy (HS-AFM), suggesting that FliM and FliN are necessary for the formation of a stable ring structure. The HS-AFM movies revealed flexible movements at the FliG region.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA