Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Biomed Microdevices ; 26(2): 25, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38780704

RESUMO

Particle classification plays a crucial role in various scientific and technological applications, such as differentiating between bacteria and viruses in healthcare applications or identifying and classifying cancer cells. This technique requires accurate and efficient analysis of particle properties. In this study, we investigated the integration of electrical and optical features through a multimodal approach for particle classification. Machine learning classifier algorithms were applied to evaluate the impact of combining these measurements. Our results demonstrate the superiority of the multimodal approach over analyzing electrical or optical features independently. We achieved an average test accuracy of 94.9% by integrating both modalities, compared to 66.4% for electrical features alone and 90.7% for optical features alone. This highlights the complementary nature of electrical and optical information and its potential for enhancing classification performance. By leveraging electrical sensing and optical imaging techniques, our multimodal approach provides deeper insights into particle properties and offers a more comprehensive understanding of complex biological systems.


Assuntos
Aprendizado de Máquina , Imagem Óptica , Algoritmos
2.
Biosensors (Basel) ; 13(9)2023 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-37754118

RESUMO

Cancer is a fatal disease and a significant cause of millions of deaths. Traditional methods for cancer detection often have limitations in identifying the disease in its early stages, and they can be expensive and time-consuming. Since cancer typically lacks symptoms and is often only detected at advanced stages, it is crucial to use affordable technologies that can provide quick results at the point of care for early diagnosis. Biosensors that target specific biomarkers associated with different types of cancer offer an alternative diagnostic approach at the point of care. Recent advancements in manufacturing and design technologies have enabled the miniaturization and cost reduction of point-of-care devices, making them practical for diagnosing various cancer diseases. Furthermore, machine learning (ML) algorithms have been employed to analyze sensor data and extract valuable information through the use of statistical techniques. In this review paper, we provide details on how various machine learning algorithms contribute to the ongoing development of advanced data processing techniques for biosensors, which are continually emerging. We also provide information on the various technologies used in point-of-care cancer diagnostic biosensors, along with a comparison of the performance of different ML algorithms and sensing modalities in terms of classification accuracy.

3.
Biosensors (Basel) ; 13(3)2023 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-36979528

RESUMO

Determining nucleic acid concentrations in a sample is an important step prior to proceeding with downstream analysis in molecular diagnostics. Given the need for testing DNA amounts and its purity in many samples, including in samples with very small input DNA, there is utility of novel machine learning approaches for accurate and high-throughput DNA quantification. Here, we demonstrated the ability of a neural network to predict DNA amounts coupled to paramagnetic beads. To this end, a custom-made microfluidic chip is applied to detect DNA molecules bound to beads by measuring the impedance peak response (IPR) at multiple frequencies. We leveraged electrical measurements including the frequency and imaginary and real parts of the peak intensity within a microfluidic channel as the input of deep learning models to predict DNA concentration. Specifically, 10 different deep learning architectures are examined. The results of the proposed regression model indicate that an R_Squared of 97% with a slope of 0.68 is achievable. Consequently, machine learning models can be a suitable, fast, and accurate method to measure nucleic acid concentration in a sample. The results presented in this study demonstrate the ability of the proposed neural network to use the information embedded in raw impedance data to predict the amount of DNA concentration.


Assuntos
Aprendizado de Máquina , Redes Neurais de Computação , Impedância Elétrica , Microfluídica , DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA