Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
iScience ; 27(3): 109121, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38524370

RESUMO

Dysregulation of liver metabolism associated with obesity during feeding and fasting leads to the breakdown of metabolic homeostasis. However, the underlying mechanism remains unknown. Here, we measured multi-omics data in the liver of wild-type and leptin-deficient obese (ob/ob) mice at ad libitum feeding and constructed a differential regulatory trans-omic network of metabolic reactions. We compared the trans-omic network at feeding with that at 16 h fasting constructed in our previous study. Intermediate metabolites in glycolytic and nucleotide metabolism decreased in ob/ob mice at feeding but increased at fasting. Allosteric regulation reversely shifted between feeding and fasting, generally showing activation at feeding while inhibition at fasting in ob/ob mice. Transcriptional regulation was similar between feeding and fasting, generally showing inhibiting transcription factor regulations and activating enzyme protein regulations in ob/ob mice. The opposite metabolic dysregulation between feeding and fasting characterizes breakdown of metabolic homeostasis associated with obesity.

2.
iScience ; 26(11): 108257, 2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-37920664

RESUMO

[This corrects the article DOI: 10.1016/j.isci.2023.107887.].

3.
Sci Rep ; 13(1): 19118, 2023 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-37926704

RESUMO

Each tissue has a dominant set of functional proteins required to mediate tissue-specific functions. Epigenetic modifications, transcription, and translational efficiency control tissue-dominant protein production. However, the coordination of these regulatory mechanisms to achieve such tissue-specific protein production remains unclear. Here, we analyzed the DNA methylome, transcriptome, and proteome in mouse liver and skeletal muscle. We found that DNA hypomethylation at promoter regions is globally associated with liver-dominant or skeletal muscle-dominant functional protein production within each tissue, as well as with genes encoding proteins involved in ubiquitous functions in both tissues. Thus, genes encoding liver-dominant proteins, such as those involved in glycolysis or gluconeogenesis, the urea cycle, complement and coagulation systems, enzymes of tryptophan metabolism, and cytochrome P450-related metabolism, were hypomethylated in the liver, whereas those encoding-skeletal muscle-dominant proteins, such as those involved in sarcomere organization, were hypomethylated in the skeletal muscle. Thus, DNA hypomethylation characterizes genes encoding tissue-dominant functional proteins.


Assuntos
Metilação de DNA , Fígado , Camundongos , Animais , Fígado/metabolismo , Músculo Esquelético/metabolismo , Epigênese Genética , Proteínas Musculares/metabolismo , DNA/metabolismo
4.
iScience ; 26(10): 107887, 2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37771660

RESUMO

Neural induction is a process where naive cells are converted into committed cells with neural characteristics, and it occurs at the earliest step during embryogenesis. Although the signaling molecules and chromatin remodeling for neural induction have been identified, the mutual relationships between these molecules are yet to be fully understood. By taking advantage of the neural differentiation system of mouse embryonic stem (ES) cells, we discovered that the BMP signal regulates the expression of several polycomb repressor complex (PRC) component genes. We particularly focused on Polyhomeotic Homolog 1 (Phc1) and established Phc1-knockout (Phc1-KO) ES cells. We found that Phc1-KO failed to acquire the neural fate, and the cells remained in pluripotent or primitive non-neural states. Chromatin accessibility analysis suggests that Phc1 is essential for chromatin packing. Aberrant upregulation of the BMP signal was confirmed in the Phc1 homozygotic mutant embryos. Taken together, Phc1 is required for neural differentiation through epigenetic modification.

5.
Sci Rep ; 13(1): 4758, 2023 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-36959243

RESUMO

Interactions between various molecular species in biological phenomena give rise to numerous networks. The investigation of these networks, including their statistical and biochemical interactions, supports a deeper understanding of biological phenomena. The clustering of nodes associated with molecular species and enrichment analysis is frequently applied to examine the biological significance of such network structures. However, these methods focus on delineating the function of a node. As such, in-depth investigations of the edges, which are the connections between the nodes, are rarely explored. In the current study, we aimed to investigate the functions of the edges rather than the nodes. To accomplish this, for each network, we categorized the edges and defined the edge type based on their biological annotations. Subsequently, we used the edge type to compare the network structures of the metabolome and transcriptome in the livers of healthy (wild-type) and obese (ob/ob) mice following oral glucose administration (OGTT). The findings demonstrate that the edge type can facilitate the characterization of the state of a network structure, thereby reducing the information available through datasets containing the OGTT response in the metabolome and transcriptome.


Assuntos
Glucose , Metaboloma , Camundongos , Animais , Camundongos Obesos , Fígado
6.
Sci Signal ; 16(773): eabn0782, 2023 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-36809024

RESUMO

Insulin regulates various cellular metabolic processes by activating specific isoforms of the Akt family of kinases. Here, we elucidated metabolic pathways that are regulated in an Akt2-dependent manner. We constructed a transomics network by quantifying phosphorylated Akt substrates, metabolites, and transcripts in C2C12 skeletal muscle cells with acute, optogenetically induced activation of Akt2. We found that Akt2-specific activation predominantly affected Akt substrate phosphorylation and metabolite regulation rather than transcript regulation. The transomics network revealed that Akt2 regulated the lower glycolysis pathway and nucleotide metabolism and cooperated with Akt2-independent signaling to promote the rate-limiting steps in these processes, such as the first step of glycolysis, glucose uptake, and the activation of the pyrimidine metabolic enzyme CAD. Together, our findings reveal the mechanism of Akt2-dependent metabolic pathway regulation, paving the way for Akt2-targeting therapeutics in diabetes and metabolic disorders.


Assuntos
Optogenética , Proteínas Proto-Oncogênicas c-akt , Proteínas Proto-Oncogênicas c-akt/metabolismo , Músculo Esquelético/metabolismo , Transdução de Sinais , Fosforilação , Insulina/metabolismo , Redes e Vias Metabólicas
7.
Sci Rep ; 12(1): 13719, 2022 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-35962137

RESUMO

Metabolic regulation in skeletal muscle is essential for blood glucose homeostasis. Obesity causes insulin resistance in skeletal muscle, leading to hyperglycemia and type 2 diabetes. In this study, we performed multiomic analysis of the skeletal muscle of wild-type (WT) and leptin-deficient obese (ob/ob) mice, and constructed regulatory transomic networks for metabolism after oral glucose administration. Our network revealed that metabolic regulation by glucose-responsive metabolites had a major effect on WT mice, especially carbohydrate metabolic pathways. By contrast, in ob/ob mice, much of the metabolic regulation by glucose-responsive metabolites was lost and metabolic regulation by glucose-responsive genes was largely increased, especially in carbohydrate and lipid metabolic pathways. We present some characteristic metabolic regulatory pathways found in central carbon, branched amino acids, and ketone body metabolism. Our transomic analysis will provide insights into how skeletal muscle responds to changes in blood glucose and how it fails to respond in obesity.


Assuntos
Diabetes Mellitus Tipo 2 , Resistência à Insulina , Animais , Glicemia/metabolismo , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Glucose/metabolismo , Resistência à Insulina/fisiologia , Leptina/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Obesos , Músculo Esquelético/metabolismo , Obesidade/genética , Obesidade/metabolismo
8.
iScience ; 25(5): 104231, 2022 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-35494245

RESUMO

Insulin signaling promotes anabolic metabolism to regulate cell growth through multi-omic interactions. To obtain a comprehensive view of the cellular responses to insulin, we constructed a trans-omic network of insulin action in Drosophila cells that involves the integration of multi-omic data sets. In this network, 14 transcription factors, including Myc, coordinately upregulate the gene expression of anabolic processes such as nucleotide synthesis, transcription, and translation, consistent with decreases in metabolites such as nucleotide triphosphates and proteinogenic amino acids required for transcription and translation. Next, as cell growth is required for cell proliferation and insulin can stimulate proliferation in a context-dependent manner, we integrated the trans-omic network with results from a CRISPR functional screen for cell proliferation. This analysis validates the role of a Myc-mediated subnetwork that coordinates the activation of genes involved in anabolic processes required for cell growth.

9.
iScience ; 25(2): 103787, 2022 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-35243212

RESUMO

Glucose homeostasis is maintained by modulation of metabolic flux. Enzymes and metabolites regulate the involved metabolic pathways. Dysregulation of glucose homeostasis is a pathological event in obesity. Analyzing metabolic pathways and the mechanisms contributing to obesity-associated dysregulation in vivo is challenging. Here, we introduce OMELET: Omics-Based Metabolic Flux Estimation without Labeling for Extended Trans-omic Analysis. OMELET uses metabolomic, proteomic, and transcriptomic data to identify relative changes in metabolic flux, and to calculate contributions of metabolites, enzymes, and transcripts to the changes in metabolic flux. By evaluating the livers of fasting ob/ob mice, we found that increased metabolic flux through gluconeogenesis resulted primarily from increased transcripts, whereas that through the pyruvate cycle resulted from both increased transcripts and changes in substrates of metabolic enzymes. With OMELET, we identified mechanisms underlying the obesity-associated dysregulation of metabolic flux in the liver.

10.
iScience ; 24(3): 102217, 2021 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-33748705

RESUMO

Systemic metabolic homeostasis is regulated by inter-organ metabolic cycles involving multiple organs. Obesity impairs inter-organ metabolic cycles, resulting in metabolic diseases. The systemic landscape of dysregulated inter-organ metabolic cycles in obesity has yet to be explored. Here, we measured the transcriptome, proteome, and metabolome in the liver and skeletal muscle and the metabolome in blood of fasted wild-type and leptin-deficient obese (ob/ob) mice, identifying components with differential abundance and differential regulation in ob/ob mice. By constructing and evaluating the trans-omic network controlling the differences in metabolic reactions between fasted wild-type and ob/ob mice, we provided potential mechanisms of the obesity-associated dysfunctions of metabolic cycles between liver and skeletal muscle involving glucose-alanine, glucose-lactate, and ketone bodies. Our study revealed obesity-associated systemic pathological mechanisms of dysfunction of inter-organ metabolic cycles.

11.
Sci Signal ; 13(660)2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-33262292

RESUMO

Impaired glucose tolerance associated with obesity causes postprandial hyperglycemia and can lead to type 2 diabetes. To study the differences in liver metabolism in healthy and obese states, we constructed and analyzed transomics glucose-responsive metabolic networks with layers for metabolites, expression data for metabolic enzyme genes, transcription factors, and insulin signaling proteins from the livers of healthy and obese mice. We integrated multiomics time course data from wild-type and leptin-deficient obese (ob/ob) mice after orally administered glucose. In wild-type mice, metabolic reactions were rapidly regulated within 10 min of oral glucose administration by glucose-responsive metabolites, which functioned as allosteric regulators and substrates of metabolic enzymes, and by Akt-induced changes in the expression of glucose-responsive genes encoding metabolic enzymes. In ob/ob mice, the majority of rapid regulation by glucose-responsive metabolites was absent. Instead, glucose administration produced slow changes in the expression of carbohydrate, lipid, and amino acid metabolic enzyme-encoding genes to alter metabolic reactions on a time scale of hours. Few regulatory events occurred in both healthy and obese mice. Thus, our transomics network analysis revealed that regulation of glucose-responsive liver metabolism is mediated through different mechanisms in healthy and obese states. Rapid changes in allosteric regulators and substrates and in gene expression dominate the healthy state, whereas slow changes in gene expression dominate the obese state.


Assuntos
Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Glucose/metabolismo , Fígado/metabolismo , Obesidade/metabolismo , Transdução de Sinais , Regulação Alostérica , Animais , Modelos Animais de Doenças , Fígado/patologia , Masculino , Camundongos , Camundongos Obesos , Obesidade/patologia
12.
Genes Cells ; 24(1): 82-93, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30417516

RESUMO

Cellular signaling regulates various cellular functions via protein phosphorylation. Phosphoproteomic data potentially include information for a global regulatory network from signaling to cellular functions, but a procedure to reconstruct this network using such data has yet to be established. In this paper, we provide a procedure to reconstruct a global regulatory network from signaling to cellular functions from phosphoproteomic data by integrating prior knowledge of cellular functions and inference of the kinase-substrate relationships (KSRs). We used phosphoproteomic data from insulin-stimulated Fao hepatoma cells and identified protein phosphorylation regulated by insulin specifically over-represented in cellular functions in the KEGG database. We inferred kinases for protein phosphorylation by KSRs, and connected the kinases in the insulin signaling layer to the phosphorylated proteins in the cellular functions, revealing that the insulin signal is selectively transmitted via the Pi3k-Akt and Erk signaling pathways to cellular adhesions and RNA maturation, respectively. Thus, we provide a method to reconstruct global regulatory network from signaling to cellular functions based on phosphoproteomic data.


Assuntos
Células/metabolismo , Redes Reguladoras de Genes , Fosfoproteínas/metabolismo , Proteômica/métodos , Transdução de Sinais , Animais , Insulina/metabolismo , Masculino , Fosfopeptídeos/metabolismo , Fosforilação , Proteínas Quinases/metabolismo , Ratos , Especificidade por Substrato
13.
iScience ; 7: 212-229, 2018 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-30267682

RESUMO

The concentrations of insulin selectively regulate multiple cellular functions. To understand how insulin concentrations are interpreted by cells, we constructed a trans-omic network of insulin action in FAO hepatoma cells using transcriptomic data, western blotting analysis of signaling proteins, and metabolomic data. By integrating sensitivity into the trans-omic network, we identified the selective trans-omic networks stimulated by high and low doses of insulin, denoted as induced and basal insulin signals, respectively. The induced insulin signal was selectively transmitted through the pathway involving Erk to an increase in the expression of immediate-early and upregulated genes, whereas the basal insulin signal was selectively transmitted through a pathway involving Akt and an increase of Foxo phosphorylation and a reduction of downregulated gene expression. We validated the selective trans-omic network in vivo by analysis of the insulin-clamped rat liver. This integrated analysis enabled molecular insight into how liver cells interpret physiological insulin signals to regulate cellular functions.

14.
Science ; 341(6145): 558-61, 2013 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-23908238

RESUMO

Robust transmission of information despite the presence of variation is a fundamental problem in cellular functions. However, the capability and characteristics of information transmission in signaling pathways remain poorly understood. We describe robustness and compensation of information transmission of signaling pathways at the cell population level. We calculated the mutual information transmitted through signaling pathways for the growth factor-mediated gene expression. Growth factors appeared to carry only information sufficient for a binary decision. Information transmission was generally more robust than average signal intensity despite pharmacological perturbations, and compensation of information transmission occurred. Information transmission to the biological output of neurite extension appeared robust. Cells may use information entropy as information so that messages can be robustly transmitted despite variation in molecular activities among individual cells.


Assuntos
Teoria da Informação , Transdução de Sinais , Animais , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Proteína 1 de Resposta de Crescimento Precoce/metabolismo , Expressão Gênica/efeitos dos fármacos , Peptídeos e Proteínas de Sinalização Intercelular/farmacologia , Células PC12 , Proteínas Proto-Oncogênicas c-fos/metabolismo , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA