Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Arch Biochem Biophys ; 701: 108817, 2021 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-33626379

RESUMO

Protein kinase C is the superfamily of intracellular effector molecules which control crucial cellular functions. Here, we for the first time did the percentage estimation of all known PKC and PKC-related isozymes at the individual cadiomyocyte level. Broad spectrum of PKC transcripts is expressed in the left ventricular myocytes. In addition to the well-known 'heart-specific' PKCα, cardiomyocytes have the high expression levels of PKCN1, PKCδ, PKCD2, PKCε. In general, we detected all PKC isoforms excluding PKCη. In cardiomyocytes PKC activity tonically regulates voltage-gated Ca2+-currents, intracellular Ca2+ level and nitric oxide (NO) production. Imidazoline receptor of the first type (I1R)-mediated induction of the PKC activity positively modulates Ca2+ release through ryanodine receptor (RyR), increasing the Ca2+ leakage in the cytosol. In cardiomyocytes with the Ca2+-overloaded regions of > 9-10 µm size, the local PKC-induced Ca2+ signaling is transformed to global accompanied by spontaneous Ca2+ waves propagation across the entire cell perimeter. Such switching of Ca2+ signaling in cardiac cells can be important for the development of several cardiovascular pathologies and/or myocardial plasticity at the cardiomyocyte level.


Assuntos
Sinalização do Cálcio , Miócitos Cardíacos/enzimologia , Proteína Quinase C/metabolismo , Animais , Isoenzimas/metabolismo , Masculino , Ratos , Ratos Wistar , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo
2.
Arch Biochem Biophys ; 693: 108542, 2020 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-32818508

RESUMO

Spontaneous Ca2+-transient (wave) generation in isolated cardiomyocytes is well established phenomenon which poses a lot of questions about myocardial excitability. Current studies of spontaneous Ca2+-activity in cardiac cells mainly relate to the kinetic characteristics, classification and simulation of Ca2+-events through ryanodine receptor (RyR) activity modeling. Here, for the first time we pay attention to the Ca2+-transients having stationary kinetics for correct estimation of the sarcoplasmic reticulum Ca2+ transport. In cardiomyocytes generating such type of Ca2+-transients, the averaged intracellular calcium ([Ca2+]in) fluorescence practically does not change in time. Stationary Ca2+-transients are observed in different animal models (Wistar, SHR, ground squirrels) revealing a common cardiomyocyte phenomenon. They somewhat depend on external Ca2+ ([Ca2+]ex) because the [Ca2+]ex lowering to 1 µM in the presence of EGTA disrupts Ca2+-wave propagation. At the same time, spontaneous Ca2+-transients do not associated with the forward or reverse mode of Na+/Ca2+ exchanger (NCX), but partially modulated by the L-type Ca2+-channels. Among the sarcoplasmic reticulum targets, RyR and SERCA are crucial for Ca2+-wave generation and sustained self-oscillation activity. Analysis of the spontaneous wave kinetics reveals that both slopes of the rising wave front and the wave front decline are gradually changed during propagation, which well correlates with the RyR and SERCA activity, respectively. On the contrary, in the electrical field-stimulated myocytes, both slope factors are sharply changed corresponding to 'all-or-nothing' rule, which is fundamental principle for action potential in cardiomyocytes. Furthermore, stimulation of single cardiomyocyte using local electrode appears the deterioration in the [Ca2+]in utilization from the cytosol, which limits the time of observation during the protocol. Obtained data suggest that stationary spontaneous Ca2+-transients occurring without actual myocellular excitation represent useful and precise tools for estimation of the sarcoplasmic reticulum Ca2+-transport.


Assuntos
Cálcio/metabolismo , Miócitos Cardíacos/metabolismo , Retículo Sarcoplasmático/metabolismo , Animais , Potenciais Evocados , Transporte de Íons , Ratos , Ratos Endogâmicos SHR , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/antagonistas & inibidores , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo
3.
Arch Biochem Biophys ; 674: 108109, 2019 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-31541620

RESUMO

AIMS: to investigate α2-AR subtype distribution and the relationship between receptor amounts and their functionality in normotensive and spontaneously hypertensive rats. METHODS: experiments were performed on left ventricular cardiomyocytes isolated from Wistar rats and SHR (2-2.5 months). Molecular routine tools (RT-PCR, Western blotting, immunocytochemistry) were used for semi-quantitative estimation of α2-AR subtypes. Fluorescence of both the Ca2+-dependent and NO-sensitive probes were used to define functionality of α2-AR, evaluated by changes in the dynamics of spontaneous Ca2+-transients and NO production in cardiomyocytes in response to the α2-AR agonist application. RESULTS: percentage of the three known α2-AR subtypes in Wistar and SHR cardiomyocytes is not principally different. Total amounts of α2A-AR subtype in SHR increases, for both the sarcolemmal and intracellular receptor pools. Total number of α2B-AR is also significantly higher in hypertensive rats with an increase in the sarcolemmal, but not the intracellular immunoreactivity. For α2C-AR subtype, no significant differences between Wistar and SHR were identified, despite the fact that its amounts in cardiomyocytes are somewhat higher than the other two subtypes. Notwithstanding the increased expression of α2-AR subtypes in SHR, α2-AR-agonist guanabenz was ineffective in suppression of spontaneous Ca2+-transients, as well as the lowering of free calcium levels in the cytosol. Guanabenz-induced NO synthesis is well correlated with the Ca2+-loading into sarcoplasmic reticulum and actually decreased in SHR cardiomyocytes. CONCLUSION: data indicate α2-AR dysfunction and ineffectiveness of α2-AR-mediated signaling pathways in this model of cardiovascular pathologies. Results can be used for clinical practice for more effective control of cardiovascular functions in various disease states.


Assuntos
Miócitos Cardíacos/metabolismo , Receptores Adrenérgicos alfa 2/metabolismo , Agonistas de Receptores Adrenérgicos alfa 2/farmacologia , Animais , Cálcio/metabolismo , Relação Dose-Resposta a Droga , Guanabenzo/farmacologia , Masculino , Óxido Nítrico/metabolismo , Ratos Endogâmicos SHR , Ratos Wistar , Transdução de Sinais/efeitos dos fármacos , Regulação para Cima
4.
Arch Biochem Biophys ; 671: 62-68, 2019 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-31158332

RESUMO

Imidazoline receptor of the first type (I1R) in addition to the established inhibition of sympathetic neurons may mediate the direct control of myocellular functions. Earlier, we revealed that I1-mediated signaling in the normotensive rat cardiomyocytes suppresses the nitric oxide production by endothelial NO synthase, impairs sarco(endo)plasmic reticulum Ca2+-ATPase (SERCA) activity, and elevates intracellular calcium in the cytosol. Also, I1-agonists counteract ß-adrenoceptor stimulation effects in respect to voltage-gated calcium currents. This study ascertains the I1R signal transduction in the normotensive Wistar and SHR cardiomyocytes. Reduction of Ca2+-currents by rilmenidine, a specific agonist of I1R, ensued from the phosphatidylcholine-specific phospholipase C-mediated activation of protein kinase C. There is a stimulation of serine/threonine phosphatase activity. In SHR cardiomyocytes, both the rilmenidine, and putative endogenous ligand, agmatine, almost twofold less effectively reduced L-type of Ca2+-currents. Average mRNA level of Nischarin, established functional component of I1R, is slightly decreased in SHR, as well as the intracellular Nischarin pool immunolabeled in the cytosol of SHR cardiomyocytes. Disturbance of I1R signal transduction in SHR may aggravate the development of this cardiovascular pathology.


Assuntos
Receptores de Imidazolinas/metabolismo , Miócitos Cardíacos/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Animais , Canais de Cálcio Tipo L/metabolismo , Relação Dose-Resposta a Droga , Peptídeos e Proteínas de Sinalização Intracelular/genética , Masculino , Toxinas Marinhas , Oxazóis/farmacologia , RNA Mensageiro/metabolismo , Ratos Endogâmicos SHR , Ratos Wistar , Rilmenidina/farmacologia
5.
Biophys Chem ; 117(2): 173-90, 2005 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-15936868

RESUMO

A kinetic model of Ca2+-dependent inactivation (CDI) of L-type Ca2+ channels was developed. The model is based on the hypothesis that postulates the existence of four short-lived modes with lifetimes of a few hundreds of milliseconds. Our findings suggest that the transitions between the modes is primarily determined by the binding of Ca2+ to two intracellular allosteric sites located in different motifs of the CI region, which have greatly differing binding rates for Ca2+ (different k(on)). The slow-binding site is controlled by local Ca2+ near a single open channel that is consistent with the "domain" CDI model, and Ca2+ binding to the fast-binding site(s) depends on Ca2+ arising from distant sources that is consistent with the "shell" CDI model. The model helps to explain numerous experimental findings that are poorly understood so far.


Assuntos
Canais de Cálcio Tipo L/fisiologia , Cálcio/fisiologia , Cálcio/química , Canais de Cálcio Tipo L/química , Ativação do Canal Iônico/fisiologia , Cinética , Potenciais da Membrana/fisiologia , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA