Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Environ Toxicol Chem ; 32(11): 2648-59, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23955807

RESUMO

The authors investigated individual toxicities of 2,4,6-trinitrotoluene (TNT) and hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) to the potworm Enchytraeus crypticus using the enchytraeid reproduction test. Studies were designed to generate ecotoxicological benchmarks that can be used for developing ecological soil-screening levels for ecological risk assessments of contaminated soils and to identify and characterize the predominant soil physicochemical parameters that can affect the toxicities of TNT and RDX to E. crypticus. Soils, which had a wide range of physicochemical parameters, included Teller sandy loam, Sassafras sandy loam, Richfield clay loam, Kirkland clay loam, and Webster clay loam. Analyses of quantitative relationships between the toxicological benchmarks for TNT and soil property measurements identified soil organic matter content as the dominant property mitigating TNT toxicity for juvenile production by E. crypticus in freshly amended soil. Both the clay and organic matter contents of the soil modulated reproduction toxicity of TNT that was weathered and aged in soil for 3 mo. Toxicity of RDX for E. crypticus was greater in the coarse-textured sandy loam soils compared with the fine-textured clay loam soils. The present studies revealed alterations in toxicity to E. crypticus after weathering and aging TNT in soil, and these alterations were soil- and endpoint-specific.


Assuntos
Oligoquetos/efeitos dos fármacos , Poluentes do Solo/toxicidade , Solo/química , Triazinas/toxicidade , Trinitrotolueno/toxicidade , Animais , Oligoquetos/fisiologia , Reprodução/efeitos dos fármacos , Poluentes do Solo/análise , Fatores de Tempo , Triazinas/análise , Trinitrotolueno/análise
2.
Environ Toxicol Chem ; 25(5): 1368-75, 2006 May.
Artigo em Inglês | MEDLINE | ID: mdl-16704071

RESUMO

Scientifically based ecological soil-screening levels are needed to identify concentrations of contaminant energetic materials (EMs) in soil that present an acceptable ecological risk at a wide range of military installations. Insufficient information regarding the toxicity of 2,4-dinitrotoluene (2,4-DNT), 2,6-dinitrotoluene (2,6-DNT), and 1,3,5-trinitrobenzene (TNB) to soil invertebrates necessitated toxicity testing. We adapted the standardized Enchytraeid Reproduction Test (International Standardization Organization 16387:2003) and selected Enchytraeus crypticus for these studies. Tests were conducted in Sassafras sandy loam soil, which supports relatively high bioavailability of nitroaromatic EMs. Weathering and aging procedures for EMs amended to test soil were incorporated into the study design to produce toxicity data that better reflect the soil exposure conditions in the field compared with toxicity in freshly amended soils. This included exposing hydrated, EM-amended soils in open glass containers in the greenhouse to alternating wetting and drying cycles. Definitive tests established that the order of EM toxicity to E. crypticus based on the median effect concentration values for juvenile production in either freshly amended or weathered and aged treatments was (from the greatest to least toxicity) TNB > 2,4-DNT > 2,6-DNT. Toxicity to E. crypticus juvenile production was significantly increased in 2,6-DNT weathered and aged soil treatments compared with toxicity in freshly amended soil, based on 95% confidence intervals. This result shows that future investigations should include a weathering and aging component to generate toxicity data that provide more complete information regarding ecotoxicological effects of energetic contaminants in soil.


Assuntos
Dinitrobenzenos/toxicidade , Oligoquetos/efeitos dos fármacos , Dióxido de Silício , Solo , Trinitrobenzenos/toxicidade , Tempo (Meteorologia) , Animais , Fatores de Tempo
3.
Chemosphere ; 62(8): 1282-93, 2006 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-16213571

RESUMO

We investigated the toxicity of an emerging polynitramine energetic material hexanitrohexaazaisowurtzitane (CL-20) to the soil invertebrate species Enchytraeus crypticus by adapting then using the Enchytraeid Reproduction Test (ISO/16387:2003). Studies were designed to develop ecotoxicological benchmark values for ecological risk assessment of the potential impacts of accidental release of this compound into the environment. Tests were conducted in Sassafras Sandy Loam soil, which supports relatively high bioavailability of CL-20. Weathering and aging procedures for CL-20 amended into test soil were incorporated into the study design to produce toxicity data that better reflect soil exposure conditions in the field compared with the toxicity in freshly amended soils. Concentration-response relationships for measurement endpoints were determined using nonlinear regressions. Definitive tests showed that toxicities for E. crypticus adult survival and juvenile production were significantly increased in weathered and aged soil treatments compared with toxicity in freshly amended soil, based on 95% confidence intervals. The median effect concentration (EC50) and EC20 values for juvenile production were 0.3 and 0.1 mg kg-1, respectively, for CL-20 freshly amended into soil, and 0.1 and 0.035 mg kg-1, respectively, for weathered and aged CL-20 soil treatments. These findings of increased toxicity to E. crypticus in weathered and aged CL-20 soil treatments compared with exposures in freshly amended soils show that future investigations should include a weathering and aging component to generate toxicity data that provide more complete information on ecotoxicological effects of emerging energetic contaminants in soil.


Assuntos
Compostos Aza/toxicidade , Compostos Heterocíclicos/toxicidade , Poluentes do Solo/toxicidade , Compostos de Anilina/toxicidade , Animais , Compostos Aza/análise , Relação Dose-Resposta a Droga , Compostos Heterocíclicos/análise , Nitrobenzenos/toxicidade , Oligoquetos , Reprodução/efeitos dos fármacos , Poluentes do Solo/análise
4.
Environ Toxicol Chem ; 24(10): 2509-18, 2005 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16268152

RESUMO

Energetic materials are employed in a wide range of commercial and military activities and often are released into the environment. Scientifically based ecological soil-screening levels (Eco-SSLs) are needed to identify contaminant explosive levels in soil that present an acceptable ecological risk. Insufficient information for 2,4,6-trinitrotoluene (TNT) to generate Eco-SSLs for soil invertebrates necessitated toxicity testing. We adapted the standardized Enchytraeid Reproduction Test and selected Enchytraeus crypticus for these studies. Tests were conducted in Sassafras sandy loam soil, which supports relatively high bioavailability of TNT. Weathering and aging procedures for TNT amended to test soil were incorporated into the study design to produce toxicity data that better reflect the soil exposure conditions in the field compared with toxicity in freshly amended soils. This included exposing hydrated TNT-amended soils in open glass containers in the greenhouse to alternating wetting and drying cycles. Definitive tests showed that toxicity for E. crypticus adult survival and juvenile production was increased significantly in weathered and aged soil treatments compared with toxicity in freshly amended soil based on 95% confidence intervals. The median effect concentration and 20% effective concentration for reproduction were 98 and 77 mg/kg, respectively, for TNT freshly amended into soil and 48 and 37 mg/kg, respectively, for weathered and aged TNT soil treatments. These findings of increased toxicity to E. crypticus in weathered and aged TNT soil treatments compared with exposures in freshly amended soils show that future investigations should include a weathering and aging component to generate toxicity data that provide more complete information on ecotoxicological effects of energetic contaminants in soil.


Assuntos
Oligoquetos/crescimento & desenvolvimento , Poluentes do Solo/metabolismo , Poluentes do Solo/toxicidade , Trinitrotolueno/metabolismo , Trinitrotolueno/toxicidade , Animais , Disponibilidade Biológica , Medição de Risco , Sobrevida , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA