Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Front Pharmacol ; 13: 1075603, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36467057

RESUMO

Methotrexate is one of the cornerstones of rheumatoid arthritis (RA) therapy. Genetic factors or single nucleotide polymorphisms (SNPs) are responsible for 15%-30% of the variation in drug response. Identification of clinically effective SNP biomarkers for predicting methotrexate (MTX) sensitivity has been a challenge. The aim of this study was to explore the association between the disease related outcome of MTX treatment and 23 SNPs in 8 genes of the MTX pathway, as well as one pro-inflammatory related gene in RA patients naïve to MTX. Categorical outcomes such as Disease Activity Score (DAS)-based European Alliance of Associations for Rheumatology (EULAR) non-response at 4 months, The American College of Rheumatology and EULAR (ACR/EULAR) non-remission at 6 months, and failure to sustain MTX monotherapy from 12 to 24 months were assessed, together with continuous outcomes of disease activity, joint pain and fatigue. We found that the SNPs rs1801394 in the MTRR gene, rs408626 in DHFR gene, and rs2259571 in AIF-1 gene were significantly associated with disease activity relevant continuous outcomes. Additionally, SNP rs1801133 in the MTHFR gene was identified to be associated with improved fatigue. Moreover, associations with p values at uncorrected significance level were found in SNPs and different categorical outcomes: 1) rs1476413 in the MTHFR gene and rs3784864 in ABCC1 gene are associated with ACR/EULAR non-remission; 2) rs1801133 in the MTHFR gene is associated with EULAR response; 3) rs246240 in the ABCC1 gene, rs2259571 in the AIF-1 gene, rs2274808 in the SLC19A1 gene and rs1476413 in the MTHFR gene are associated with failure to MTX monotherapy after 12-24 months. The results suggest that SNPs in genes associated with MTX activity may be used to predict MTX relevant-clinical outcomes in patients with RA.

2.
FEBS Open Bio ; 12(1): 163-174, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34698439

RESUMO

In humans, there are two forms of glutaminase (GLS), designated GLS1 and GLS2. These enzymes catalyse the conversion of glutamine to glutamate. GLS1 exists as two isozymes: kidney glutaminase (KGA) and glutaminase C (GAC). Several GLS inhibitors have been identified, of which DON (6-diazo-5-oxonorleucine), BPTES (bis-2-(5-phenylacetamido-1, 3, 4-thiadiazol-2-yl) ethyl sulphide), 968 (5-(3-Bromo-4-(dimethylamino)phenyl)-2,2-dimethyl-2,3,5,6-tetrahydrobenzo[a]phenanthridin-4(1H)-one) and CB839 (Telaglenastat) are the most widely used. However, these inhibitors have variable efficacy, specificity and bioavailability in research and clinical settings, implying the need for novel and improved GLS inhibitors. Based on this need, a diverse library of 28,000 compounds from Enamine was screened for inhibition of recombinant, purified GAC. From this library, one inhibitor designated compound 19 (C19) was identified with kinetic features revealing allosteric inhibition of GAC in the µm range. Moreover, C19 inhibits anti-CD3/CD28-induced CD4+ T-cell proliferation and cytokine production with similar or greater potency as compared to BPTES. Taken together, our data suggest that C19 has the potential to modulate GLS1 activity and alter metabolic activity of T cells.


Assuntos
Glutaminase , Tiadiazóis , Proliferação de Células , Inibidores Enzimáticos/farmacologia , Glutaminase/metabolismo , Glutamina/metabolismo , Humanos , Tiadiazóis/metabolismo , Tiadiazóis/farmacologia
3.
Scand J Immunol ; 92(5): e12956, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32767795

RESUMO

In a healthy person, metabolically quiescent T lymphocytes (T cells) circulate between lymph nodes and peripheral tissues in search of antigens. Upon infection, some T cells will encounter cognate antigens followed by proliferation and clonal expansion in a context-dependent manner, to become effector T cells. These events are accompanied by changes in cellular metabolism, known as metabolic reprogramming. The magnitude and variation of metabolic reprogramming are, in addition to antigens, dependent on factors such as nutrients and oxygen to ensure host survival during various diseases. Herein, we describe how metabolic programmes define T cell subset identity and effector functions. In addition, we will discuss how metabolic programs can be modulated and affect T cell activity in health and disease using cancer and autoimmunity as examples.


Assuntos
Autoimunidade/imunologia , Metabolismo Energético/imunologia , Ativação Linfocitária/imunologia , Neoplasias/imunologia , Subpopulações de Linfócitos T/imunologia , Linfócitos T/imunologia , Animais , Microambiente Celular/imunologia , Humanos , Modelos Imunológicos , Neoplasias/metabolismo , Subpopulações de Linfócitos T/metabolismo , Linfócitos T/metabolismo
4.
Sci Rep ; 9(1): 4276, 2019 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-30862884

RESUMO

A majority of lymphomas are derived from B cells and novel treatments are required to treat refractory disease. Neurotransmitters such as serotonin and dopamine influence activation of B cells and the effects of a selective serotonin 1A receptor (5HT1A) antagonist on growth of a number of B cell-derived lymphoma cell lines were investigated. We confirmed the expression of 5HT1A in human lymphoma tissue and in several well-defined experimental cell lines. We discovered that the pharmacological inhibition of 5HT1A led to the reduced proliferation of B cell-derived lymphoma cell lines together with DNA damage, ROS-independent caspase activation and apoptosis in a large fraction of cells. Residual live cells were found 'locked' in a non-proliferative state in which a selective transcriptional and translational shutdown of genes important for cell proliferation and metabolism occurred (e.g., AKT, GSK-3ß, cMYC and p53). Strikingly, inhibition of 5HT1A regulated mitochondrial activity through a rapid reduction of mitochondrial membrane potential and reducing dehydrogenase activity. Collectively, our data suggest 5HT1A antagonism as a novel adjuvant to established cancer treatment regimens to further inhibit lymphoma growth.


Assuntos
Autofagia/fisiologia , Linfoma de Células B/metabolismo , Receptores de Serotonina/metabolismo , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Apoptose/genética , Apoptose/fisiologia , Autofagia/genética , Ciclo Celular/genética , Ciclo Celular/fisiologia , Linhagem Celular Tumoral , Proliferação de Células/genética , Proliferação de Células/fisiologia , Dano ao DNA/genética , Dano ao DNA/fisiologia , Humanos , Linfoma de Células B/genética , Potencial da Membrana Mitocondrial , Pessoa de Meia-Idade , Espécies Reativas de Oxigênio/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Receptores de Serotonina/genética , Receptores 5-HT1 de Serotonina/genética , Receptores 5-HT1 de Serotonina/metabolismo , Transdução de Sinais/genética , Transdução de Sinais/fisiologia , Adulto Jovem
5.
Biochem Biophys Res Commun ; 460(3): 645-50, 2015 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-25817792

RESUMO

Signal regulatory protein α (SIRPα) is an immunoglobulin super family protein predominantly expressed by myeloid but not lymphoid cells, and its role in lymphocyte homeostasis and function is still to be revealed. We demonstrate that mice bearing a mutant SIRPα lacking the cytoplasmic signaling domain (SIRPα MT) had an increased amount of splenic marginal zone (MZ) B cells compared to wild-type controls. Immunohistochemical analysis revealed an increased localization of MZB cells into B cell follicular areas of the white pulp in SIRPα MT spleens. However, we found no signs of an increased MZB cell activation level in MT mice. The immune response to T-independent antigens in vivo was slightly increased in SIRPα MT mice while sorted MZB from these mice responded normally to LPS in vitro. Bone marrow reconstitution experiments demonstrated that the MZB cell phenotype of SIRPα MT mice was due to lack of SIRPα signaling in non-hematopoietic cells. In contrast, MZ retention of MZ macrophages required hematopoietic SIRPα, while normal distribution of metallophilic macrophages required non-hematopoietic SIRPα signaling. In summary, these data identified SIRPα signaling in non-hematopoietic cells to play an important role in regulating the numbers and positioning MZB cell in the spleen.


Assuntos
Linfócitos B/metabolismo , Receptores Imunológicos/metabolismo , Transdução de Sinais , Animais , Ensaio de Imunoadsorção Enzimática , Camundongos , Camundongos Endogâmicos C57BL
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA