Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Water Res ; 250: 121053, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38159539

RESUMO

Multiple anthropogenic stressors influence the functioning of lakes and ponds, but their combined effects are often little understood. We conducted two mesocosm experiments to evaluate the effects of warming (+4 °C above ambient temperature) and environmentally relevant concentrations of a mixture of commonly used pharmaceuticals (cardiovascular, psychoactive, antihistamines, antibiotics) on tri-trophic food webs representative of communities in ponds and other small standing waters. Communities were constituted of phyto- and zooplankton and macroinvertebrates (molluscs and insects) including benthic detritivores, grazers, omnivorous scrapers, omnivorous piercers, water column predators, benthic predators, and phytophilous predators. We quantified the main and interactive effects of warming and pharmaceuticals on each trophic level in the pelagic community and attributed them to the direct effects of both stressors and the indirect effects arising through biotic interactions. Warming and pharmaceuticals had stronger effects in the summer experiment, altering zooplankton community composition and causing delayed or accelerated emergence of top insect predators (odonates). In the summer experiment, both stressors and top predators reduced the biomass of filter-feeding zooplankton (cladocerans), while warming and pharmaceuticals had opposite effects on phytoplankton. In the winter experiment, the effects were much weaker and were limited to a positive effect of warming on phytoplankton biomass. Overall, we show that pharmaceuticals can exacerbate the effects of climate warming in freshwater ecosystems, especially during the warm season. Our results demonstrate the utility of community-level studies across seasons for risk assessment of multiple emerging stressors in freshwater ecosystems.


Assuntos
Ecossistema , Cadeia Alimentar , Animais , Clima , Fitoplâncton , Zooplâncton , Lagos , Preparações Farmacêuticas
2.
Sci Total Environ ; 901: 165794, 2023 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-37527719

RESUMO

Elevated environmental levels of elements originating from anthropogenic activities threaten natural communities and public health, as these elements can persist and bioaccumulate in the environment. However, their environmental risks and bioaccumulation patterns are often habitat-, species- and element-specific. We studied the bioaccumulation patterns of 11 elements in seven freshwater taxa in post-mining habitats in the Czech Republic, ranging from less polluted mining ponds to highly polluted fly ash lagoons. We found nonlinear, power-law relationships between the environmental and tissue concentrations of the elements, which may explain differences in bioaccumulation factors (BAF) reported in the literature. Tissue concentrations were driven by the environmental concentrations in non-essential elements (Al, As, Co, Cr, Ni, Pb and V), but this dependence was limited in essential elements (Cu, Mn, Se and Zn). Tissue concentrations of most elements were also more closely related to substrate than to water concentrations. Bioaccumulation was habitat specific in eight elements: stronger in mining ponds for Al and Pb, and stronger in fly ash lagoons for As, Cu, Mn, Pb, Se, V and Zn, although the differences were often minor. Bioaccumulation of some elements further increased in mineral-rich localities. Proximity to substrate, rather than trophic level, drove increased bioaccumulation levels across taxa. This highlights the importance of substrate as a pollutant reservoir in standing freshwaters and suggests that benthic taxa, such as molluscs (e.g., Physella) and other macroinvertebrates (e.g., Nepa), constitute good bioindicators. Despite the higher environmental risks in fly ash lagoons than in mining ponds, the observed ability of freshwater biota to sustain pollution supports the conservation potential of post-industrial sites. The power law approach used here to quantify and disentangle the effects of various bioaccumulation drivers may be helpful in additional contexts, increasing our ability to predict the effects of other contaminants and environmental hazards on biota.

3.
Sci Total Environ ; 897: 165419, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37429477

RESUMO

Neonicotinoids are increasingly and widely used systemic insecticides in agriculture, residential applications, and elsewhere. These pesticides can sometimes occur in small water bodies in exceptionally high concentrations, leading to downstream non-target aquatic toxicity. Although insects appear to be the most sensitive group to neonicotinoids, other aquatic invertebrates may also be affected. Most existing studies focus on single-insecticide exposure and very little is known concerning the impact of neonicotinoid mixtures on aquatic invertebrates at the community level. To address this data gap and explore community-level effects, we performed an outdoor mesocosm experiment that tested the effect of a mixture of three common neonicotinoids (formulated imidacloprid, clothianidin and thiamethoxam) on an aquatic invertebrate community. Exposure to the neonicotinoid mixture induced a top-down cascading effect on insect predators and zooplankton, ultimately increasing phytoplankton. Our results highlight complexities of mixture toxicity occurring in the environment that may be underestimated with traditional mono-specific toxicological approaches.


Assuntos
Inseticidas , Poluentes Químicos da Água , Animais , Poluentes Químicos da Água/análise , Neonicotinoides/toxicidade , Invertebrados , Inseticidas/análise , Nitrocompostos/toxicidade , Água Doce
4.
Sci Total Environ ; 900: 165803, 2023 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-37499824

RESUMO

Deposits of fly ash and other coal combustion wastes are common remnants of the energy industry. Despite their environmental risks from heavy metals and trace elements, they have been revealed as refuges for threatened terrestrial biodiversity. Surprisingly, freshwater biodiversity of fly ash sedimentation lagoons remains unknown despite such lack of knowledge strongly limits the efficient restoration of fly ash deposits. We bring the first comprehensive survey of freshwater biodiversity, including nekton, benthos, zooplankton, phytoplankton, and macrophytes, in fly ash lagoons across industrial regions of the Czech Republic. To assess their conservation potential, we compared their biodiversity with abandoned post-mining ponds, the known strongholds of endangered aquatic species in the region with a shortage of natural ponds. Of 28 recorded threatened species, 15 occurred in the studied fly ash lagoons, some of which were less abundant or even absent in the post-mining ponds. These are often species of nutrient-poor, fishless waters with rich vegetation, although some are specialised extremophiles. Species richness and conservation value of most groups in the fly ash lagoons did not significantly differ from the post-mining ponds, except for species richness of benthos, zooplankton, and macrophytes, which were slightly lower in the fly ash lagoons. Although the concentrations of some heavy metals (mainly Se, V, and As) were significantly higher in the fly ash lagoons, they did not significantly affect species richness or conservation value of the local communities. The differences in species composition therefore does not seem to be caused by water chemistry. Altogether, we have shown that fly ash lagoons are refuges for threatened aquatic species, and we thus suggest maintaining water bodies during site restoration after the cessation of fly ash deposition. Based on our analyses of environmental variables, we discuss suitable restoration practices that efficiently combine biodiversity protection and environmental risk reduction.


Assuntos
Cinza de Carvão , Metais Pesados , Biodiversidade , Ecossistema , Água Doce , Água
5.
Biodivers Data J ; 10: e90950, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36761544

RESUMO

Background: The mayfly Ephemera (Sinephemera) glaucops Pictet, 1843 has been considered regionally extinct in the Czech Republic, with the last occurrence dating from 1933. Its extinction was connected with the anthropogenic changes of lowland rivers, forming the original habitat of E.glaucops within the area of the Czech Republic. However, the species has been reported as spreading in man-made, often post-industrial waterbodies in Germany, The Netherlands and Austria since the 1970s. New information: We report E.glaucops from the Czech Republic, based on 27 larvae collected in the North Bohemia lignite basin in 2018. All individuals were found at one locality - a small kaolin pit in the shallow part near the shore, mostly without macrophytes. We provide details about the locality and morphological diagnostic characters of E.glaucops. This study highlights the importance of post-industrial sites for aquatic biodiversity as surrogate biotopes for degraded original habitats.

6.
Sci Total Environ ; 710: 135626, 2020 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-31784170

RESUMO

Environmental changes can exert strong pressure on freshwater biota and lead to unwanted alterations of local communities and deterioration of ecosystem services. Disentangling the links between environmental and community changes is, therefore, essential to understand and predict the impact of human activities on freshwater ecosystems. This is particularly relevant for man-made freshwater reservoirs that represent a nexus between anthropogenic, environmental, and biotic effects. Reservoir food webs depend strongly on phytoplankton dynamics, which are affected by abiotic conditions, nutrient availability and grazing pressure by zooplankton. We studied the effects of relevant environmental drivers (hydrochemistry, hydrodynamics and zooplankton) on the composition, diversity and community stability of main morpho-functional phytoplankton groups over 32 years in the Rímov Reservoir (Czech Republic). Environmental conditions in the reservoir are characterised by three distinct periods (1983-89, 1990-99, and 2000-14) defined by shifts and breakpoints in temporal trends in reservoir hydrochemistry and hydraulic conditions, and we examined if and how phytoplankton responded to these abrupt changes. We found significant differences in phytoplankton composition among the three periods. Phytoplankton underwent a substantial compositional shift towards a dominance of pennate diatoms. Time-lag analysis of dissimilarity in phytoplankton composition revealed higher and stochastic annual variations until 1999, followed by a lower variability and divergence in phytoplankton composition in subsequent years. Changes in overall phytoplankton assemblage and most abundant morpho-functional phytoplankton groups were driven mainly by hydrochemical (total nitrogen) and hydrodynamic variables (inflow rate, surface level and mixing depth) and less by zooplankton dynamics. These results suggest that phytoplankton are driven primarily by nutrient input and water regime, both of which can be appropriately managed to support valuable ecosystem services provided by phytoplankton in freshwater reservoirs.


Assuntos
Ecossistema , Fitoplâncton , Animais , República Tcheca , Água Doce , Humanos , Estações do Ano , Zooplâncton
7.
BMC Ecol ; 18(1): 19, 2018 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-29921270

RESUMO

BACKGROUND: Chironomids, a major invertebrate taxon in many standing freshwaters, rely on adult flight to reach new suitable sites, yet the impact of weather conditions on their flight activity is little understood. We investigated diel and seasonal flight activity patterns of aquatic and terrestrial chironomids in a reclaimed sandpit area and analysed how weather conditions and seasonality influenced their total abundance and species composition. RESULTS: Air temperature, relative humidity, wind speed, and air pressure significantly affected total flight activity of both groups, but not in the same way. We identified an intermediate temperature and humidity optimum for the flight activity of terrestrial chironomids, which contrasted with weaker, timescale-dependent relationships in aquatic species. Flight activity of both groups further declined with wind speed and increased with air pressure. Observed flight patterns also varied in time on both daily and seasonal scale. Flight activity of both groups peaked in the evenings after accounting for weather conditions but, surprisingly, aquatic and terrestrial chironomids used partly alternating time windows for dispersal during the season. This may be driven by different seasonal trends of key environmental variables in larval habitats and hence implies that species phenologies and conditions experienced by chironomid larvae (and probably other aquatic insects with short-lived adults) influence adult flight patterns more than weather conditions. CONCLUSIONS: Our results provide detailed insights into the drivers of chironomid flight activity and highlight the methodological challenges arising from the inherent collinearity of weather characteristics and their diurnal and seasonal cycles.


Assuntos
Chironomidae/fisiologia , Meio Ambiente , Voo Animal , Tempo (Meteorologia) , Animais , Ritmo Circadiano , República Tcheca , Dinâmica Populacional , Estações do Ano
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA