Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Mol Phylogenet Evol ; 139: 106559, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31302224

RESUMO

The insertion sequence 6110 (IS6110) is the most studied transposable element in the Mycobacterium tuberculosis complex species. The element plays a significant role in genome plasticity of this important human pathogen, but still many causes and consequences of its transposition have not been fully studied. Here, we analyzed insertion sites for 902 Mycobacterium tuberculosis lineage 2 strains using whole-genome sequencing data. In total, 17,972 insertions were found, corresponding to 827 independent positions in the genome of the reference strain H37Rv. To trace the history of IS6110 expansion since proto-Beijing strains up to modern sublineages, we looked at the distribution of IS6110 across the genome-wide SNP-based phylogenetic tree. This analysis demonstrated a stepwise transposition of IS6110 that occurs by «copy-and-paste¼ mechanism. Additionally, we detected evolutionary-scale and sublineage-specific integration sites, which can be used for typing and for understanding the reasons for the success of the lineage. A significant part of such insertions affected the genes that are essential for the pathogen. Finally, we identified and confirmed deletions that occurred between differently oriented elements, which is uncommon for this family of insertion elements and appears to be another mechanism of genome variability.


Assuntos
Elementos de DNA Transponíveis/genética , Mycobacterium tuberculosis/classificação , Mycobacterium tuberculosis/genética , Filogenia , Sequência de Bases , DNA Intergênico/genética , Genoma Bacteriano , Humanos , Recombinação Genética/genética , Deleção de Sequência/genética , Sequenciamento Completo do Genoma
2.
Mol Phylogenet Evol ; 116: 202-212, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28893611

RESUMO

To date, a major attention was justly given to the global lineages of Mycobacterium tuberculosis. Here, we demonstrated an importance of the minor ones, on an example of intriguing and underestimated NEW-1 family that belongs to Euro-American lineage (lineage 4). Analysis of the global WGS/NGS datasets (5715 strains) identified 2235 strains of Lineage 4 and 66 strains of sublineage L4.5. This latter is marked with RD122 genomic deletion and includes NEW-1 family. Phylogenomic analysis confirmed a separate position of the NEW-1 family that we tentatively designate L4.5.1/Iran. We propose an evolution/migration scenario starting with origin of L4.5 1000-1300 ya in China, subsequent origin of the pre-NEW-1 intermediate genotype in Tibet, further migration to Xinjiang/Uyghur, and finally to Iran since 800 ya (origin of NEW-1), possibly, via expansion of the Mongol Yuan empire. Analysis of longitudinal phylogeographic datasets revealed a sharp increase in prevalence of NEW-1 strains in Iran and its eastwards neighbors in the last 20years; most alarmingly, it is accompanied with significant association with multidrug resistance (MDR). Ongoing migration, especially, Afghan refugees flows to developed countries emphasize a risk of the wider spread of the epidemic MDR subtype within NEW-1 family that we coin as emerging resistant clone of M. tuberculosis in West Asia.


Assuntos
Mycobacterium tuberculosis/classificação , Filogeografia , Ásia Ocidental , Sistemas CRISPR-Cas/genética , Evolução Molecular , Loci Gênicos , Genótipo , Técnicas de Genotipagem , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Repetições Minissatélites/genética , Filogenia
3.
Sci Rep ; 7(1): 9227, 2017 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-28835627

RESUMO

Due to its rapid spread and association with the numerous outbreaks, the global spread of East Asian lineage of Mycobacterium tuberculosis strains presents a global concern. Although there were many attempts to describe its population structure, no consensus has been reached yet. To define unbiased classification that will facilitate future studies of this lineage, we analyzed the performance and congruence of eight different genotyping schemes based on phylogenetic analysis of 1,398 strains from 32 countries using whole-genome sequencing (WGS) data. We confirm that East Asian lineage comprises two major clades, designated proto-Beijing, which harbors unusual 43-signal spoligoprofile, and Beijing, with well-known spoligoprofile (deleted signals from 1 to 34). We show that different genotyping methods give high consistency results in description of ancient Beijing strains while the classification of modern Beijing strains is significantly divergent due to star-shaped phylogeny. Using WGS data we intersect different studies and for the first time provide balanced classification with well-defined major groups and their genetic markers. Our reconstructed phylogenetic tree can also be used for further analysis of epidemiologically important clusters and their ancestors as well as white spots of unclassified strains, which are prospective areas of research.


Assuntos
Evolução Biológica , Mycobacterium tuberculosis/classificação , Mycobacterium tuberculosis/genética , Tuberculose/microbiologia , Alelos , Marcadores Genéticos , Variação Genética , Genótipo , Humanos , Filogenia , Polimorfismo de Nucleotídeo Único , Tuberculose/epidemiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA